Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude

Abstract

Early to Middle Miocene sea-level oscillations of approximately 40–60 m estimated from far-field records1,2,3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72–17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site U1521 location and surrounding geology.
Fig. 2: Selected provenance proxies from IODP Site U1521 compared with Early Miocene climate records.
Fig. 3: Site U1521 detrital zircon U–Pb age distributions.

Similar content being viewed by others

Data availability

The data sets generated as part of this study are available in the British Geological Survey National Geoscience Data Centre. Data sets include Nd and Sr isotope data (https://doi.org/10.5285/3a646c8a-8422-4079-a928-a159532439eb), zircon U-Pb dates (https://doi.org/10.5285/cfadf931-0804-484c-a9d0-96254239c421), clast counts (https://doi.org/10.5285/b043471f-22e5-40e4-b274-1c875316d725), clay mineralogy data (https://doi.org/10.5285/b3cb3574-49b0-44c8-a934-3da88ca4ef93), hornblende 40Ar/39Ar dates (https://doi.org/10.5285/926cad28-669f-4703-8a5b-5e7e843a4ee1) and palynological counts (https://doi.org/10.5285/adea0809-5fe5-4fb5-9f3e-9d774534d26d). Source data are provided with this paper.

References

  1. Kominz, M. A. et al. Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one-dimensional backstripping: A case for both eustasy and epeirogeny. Geosphere 12, 1437–1456 (2016).

    ADS  Google Scholar 

  2. Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pekar, S. F. & DeConto, R. M. High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 101–109 (2006).

    Google Scholar 

  4. Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paxman, G. J., Gasson, E. G., Jamieson, S. S., Bentley, M. J., & Ferraccioli, F. Long‐term increase in antarctic ice sheet vulnerability driven by bed topography evolution. Geophys. Res. Lett. 47, e2020GL090003 (2020).

    ADS  Google Scholar 

  6. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).

  7. Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27, 3–18 (2014).

    ADS  Google Scholar 

  8. Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum‐Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977).

    ADS  CAS  Google Scholar 

  9. Barrett, P. J. Characteristics of pebbles from Cenozoic marine glacial sediments in the Ross Sea (DSDP Sites 270–274) and the South Indian Ocean (Site 268). Initial Rep. Deep Sea Drill. Proj. 28, 769–784 (1975).

    Google Scholar 

  10. Passchier, S. & Krissek, L. A. Oligocene–Miocene Antarctic continental weathering record and paleoclimatic implications, Cape Roberts drilling project, Ross Sea, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 30–40 (2008).

    Google Scholar 

  11. Levy, R. et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3453–3458 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS  CAS  PubMed  Google Scholar 

  13. Kennett, J. P. & Barker, P. F. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective. Proc. Ocean Drill. Program, Sci. Results 113, 937–960 (1990).

    Google Scholar 

  14. Hauptvogel, D. W. & Passchier, S. Early–Middle Miocene (17–14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica. Global Planet. Change 82, 38–50 (2012).

    ADS  Google Scholar 

  15. Levy, R. H. et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nat. Geosci. 12, 132–137 (2019).

    ADS  CAS  Google Scholar 

  16. Colleoni, F. et al. Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci. Rep. 8, 1–12 (2018).

    CAS  Google Scholar 

  17. Wilson, D. S. et al. Antarctic topography at the Eocene‐Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335‐336, 24–34 (2012).

    Google Scholar 

  18. Paxman, G. J. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

    Google Scholar 

  19. Gasson, E. G. & Keisling, B. A. The Antarctic Ice Sheet: A Paleoclimate modelling perspective. Oceanography (Wash. D.C.) 33, 90–100 (2020).

    Google Scholar 

  20. Anderson, J. B. & Bartek, L. R. in The Antarctic Paleoenvironment: A Perspective on Global Change. Part One Vol. 56 (eds Kennett, J.P & Warkne, D. A.) 231–264 (AGU, 1992).

  21. De Santis, L., Anderson, J. B., Brancolini, G. & Zayatz, I. in Geology and Seismic Stratigraphy of the Antarctic Margin Vol. 68 (eds Cooper, A. K., Barker, P. F. & Brancolini, G.) 235–260 (AGU, 1995).

  22. Gohl, K. et al. Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre-glacial to recent times: Evidence for a dynamic West Antarctic Ice Sheet. Mar. Geol. 344, 115–131 (2013).

    ADS  Google Scholar 

  23. Pérez, L. F. et al. Early-middle Miocene ice sheet dynamics in the Ross Sea embayment: results from integrated core-log-seismic interpretation. Geol. Soc. Am. Bull. https://doi.org/10.1130/B35814.1 (2021).

  24. Bart, P. J. Were West Antarctic ice sheet grounding events in the Ross Sea a consequence of East Antarctic ice sheet expansion during the middle Miocene? Earth Planet. Sci. Lett. 216, 93–107 (2003).

    ADS  CAS  Google Scholar 

  25. Chow, J. M. & Bart, P. J. West Antarctic Ice Sheet grounding events on the Ross Sea outer continental shelf during the middle Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 169–186 (2003).

    Google Scholar 

  26. McKay, R., De Santis, L. & Kulhanek, D. K. and the Expedition 374 Science Party. Ross Sea West Antarctic Ice Sheet History in Proc. Int. Ocean Discovery Program (IODP, 2019).

  27. Licht, K. J. & Hemming, S. R. Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications. Quat. Sci. Rev. 164, 1–24 (2017).

    ADS  Google Scholar 

  28. Farmer, G. L., Licht, K., Swope, R. J. & Andrews, J. Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica. Earth Planet. Sci. Lett. 249, 90–107 (2006).

    ADS  Google Scholar 

  29. van Wyck de Vries, M., Bingham, R. G. & Hein, A. S. in Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes (eds Siegert, M. J., Jamieson, S. S. R. & White, D. A.) https://doi.org/10.1144/SP461.7 (Geological Society, 2017).

  30. Farmer, G. L. & Licht, K. J. Generation and fate of glacial sediments in the central Transantarctic Mountains based on radiogenic isotopes and implications for reconstructing past ice dynamics. Quat. Sci. Rev. 150, 98–109 (2016).

    ADS  Google Scholar 

  31. Goodge, J. W. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Res. 80, 50–122 (2020).

    ADS  Google Scholar 

  32. Licht, K. J. & Palmer, E. F. Erosion and transport by Byrd Glacier, Antarctica during the last glacial maximum. Quat. Sci. Rev. 62, 32–48 (2013).

    ADS  Google Scholar 

  33. Licht, K. J., Hennessy, A. J. & Welke, B. M. The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions. Antarct. Sci. 26, 687–697 (2014).

    ADS  Google Scholar 

  34. Bader, N. A., Licht, K. J., Kaplan, M. R., Kassab, C. & Winckler, G. East Antarctic ice sheet stability recorded in a high-elevation ice-cored moraine. Quat. Sci. Rev. 159, 88–102 (2017).

    ADS  Google Scholar 

  35. Kyle, R. A. & Schopf, J. M. in Antarctic Geoscience (ed. Craddock, C.) 649–659 (Univ. Wisconsin Press, 1982).

  36. Perotti, M., Andreucci, B., Talarico, F., Zattin, M. & Langone, A. Multianalytical provenance analysis of Eastern Ross Sea LGM till sediments (Antarctica): Petrography, geochronology, and thermochronology detrital data. Geochem. Geophys. Geosyst. 18, 2275–2304 (2017).

    ADS  CAS  Google Scholar 

  37. Jordan, T. A., Riley, T. R. & Siddoway, C. S. The geological history and evolution of West Antarctica. Nat. Rev. Earth Environ. 1, 117–133 (2020).

    ADS  Google Scholar 

  38. Balshaw-Biddle, K. M. Antarctic Glacial Chronology Reflected in the Oligocene through Pliocene Sedimentary Section in the Ross Sea PhD Thesis, Rice University (1981).

  39. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    ADS  CAS  PubMed  Google Scholar 

  40. Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).

    ADS  CAS  PubMed  Google Scholar 

  41. Alley, R. B., Cuffey, K. M. & Zoet, L. K. Glacial erosion: status and outlook. Ann. Glaciol. 60, 1–13 (2019).

    ADS  Google Scholar 

  42. Cox, S. C., Smith Lyttle, B. and the GeoMAP team. SCAR GeoMAP dataset. GNS Science, Lower Hutt, New Zealand. Release v.201907 https://doi.org/10.21420/7SH7-6K05 (2019).

  43. Morlighem, M. MEaSUREs BedMachine Antarctica, Version 1 (Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019; accessed 10 June 2021); https://doi.org/10.5067/C2GFER6PTOS4.

  44. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    ADS  CAS  Google Scholar 

  45. Mouginot, J., Scheuchl, B. & Rignot. E. MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2 (Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017; accessed 12 June 2020); https://doi.org/10.5067/AXE4121732AD.

  46. Rignot, E., Jacobs, S. S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around. Antarct. Sci. 341, 266–270 (2013).

    CAS  Google Scholar 

  47. Tinto, K. J. et al. Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat. Geosci. 12, 441–449 (2019).

    ADS  CAS  Google Scholar 

  48. Vermeesch, P. Statistical models for point-counting data. Earth Planet. Sci. Lett. 501, 112–118 (2018).

    ADS  CAS  Google Scholar 

  49. Ogg, J. Geomagnetic Polarity Time Scale. In Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 159–192 (Elsevier, 2020).

  50. Rae, J. W. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 599–631 (2021).

    ADS  Google Scholar 

  51. Vermeesch, P. Multi-sample comparison of detrital age distributions. Chem. Geol. 341, 140–146 (2013).

    ADS  CAS  Google Scholar 

  52. Goldstein, S. L. & Hemming, S. R. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 453–489 (Pergamon, 2003).

  53. Garçon, M., Chauvel, C., France-Lanord, C., Huyghe, P. & Lavé, J. Continental sedimentary processes decouple Nd and Hf isotopes. Geochim. Cosmochim. Acta 121, 177–195 (2013).

    ADS  Google Scholar 

  54. Gutjahr, M. et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 242, 351–370 (2007).

    ADS  CAS  Google Scholar 

  55. Simões Pereira, P. et al. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: D–etrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments. Earth Sci. Rev. 182, 204–232 (2018).

    ADS  Google Scholar 

  56. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    ADS  MathSciNet  Google Scholar 

  57. Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, Q08006 (2006).

    ADS  Google Scholar 

  58. Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    ADS  CAS  Google Scholar 

  59. Sláma, J. et al. Plešovice zircon—a new natural reference material for UPb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    ADS  Google Scholar 

  60. Pearce, N. J. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 21, 115–144 (1997).

    CAS  Google Scholar 

  61. Griffin, W. L. in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.) 308–311 (Mineralogical Association of Canada, 2008).

  62. Vermeesch, P. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 224, 441–451 (2004).

    ADS  CAS  Google Scholar 

  63. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

    ADS  CAS  Google Scholar 

  64. Vermeesch, P. & Isoplot, R. A free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–1493 (2018).

    CAS  Google Scholar 

  65. Talarico, F. & Sandroni, S. Petrography, mineral chemistry and provenance of basement clasts in the CRP-1 drillcore (Victoria Land Basin, Antarctica). Terra Antarct. 5, 601–610 (1998).

    Google Scholar 

  66. Talarico, F. & Sandroni, S. Provenance signature of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: the ANDRILL AND-1B core record. Global Planet. Change 69, 103–123 (2009).

    ADS  Google Scholar 

  67. Talarico, F., Sandroni, S., Fielding, C. R. & Atkins, C. Variability, petrography and provenance of basement clasts from CRP-2/2A drillcore (Victoria Land Basin, Ross Sea, Antarctica). Terra Antarct. 7, 529–544 (2000).

    Google Scholar 

  68. Sandroni, S. & Talarico, F. M. Petrography and provenance of basement clasts and clast variability in CRP-3 drillcore (Victoria Land Basin, Antarctica). Terra Antarct. 8, 449–467 (2001).

    Google Scholar 

  69. Wood, G. D., Gabriel, A. M. & Lawson, J. C. in Palynology: Principles and Applications (eds Jansonius, J. & McGregor, D. C.) 29–50 (American Association of Stratigraphic Palynologists Foundation, 1996).

  70. Raine, J. I., Mildenhall, D. C. & Kennedy, E. M. New Zealand Fossil Spores and Pollen: An Illustrated Catalogue (GNS Science Miscellaneous Series No. 4, 4th edition, 2011); http://data.gns.cri.nz/sporepollen/index.htm

  71. Prebble, J. G. Descriptions and occurrences of pollen and spores from New Zealand Cenozoic sediments. GNS Science Internal Report 2016, 137 (2016).

    Google Scholar 

  72. Askin, R. A. in Palaeobiology and Palaeoenvironments of Eocene Rocks, McMurdo Sound, East Antarctica Antarctic Research Series v76 (eds Stilwel, J. D. & Feldman, R. M.) 161–181 (American Geophysical Union, 2000).

  73. Askin, R. A. & Raine, J. I. Oligocene and Early Miocene terrestrial palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antarct. 7, 493–501 (2000).

    Google Scholar 

  74. Truswell, E. M. Recycled Cretaceous and Tertiary pollen and spores in Antarctic marine sediments: a catalogue. Palaeontographica Abt. B Paläophytol. 186, 121–174 (1983).

    Google Scholar 

  75. Fensome, R. A. & Williams, G. L. The Lentin and Williams Index of Fossil Dinoflagellates (American Association of Stratigraphic Palynologists Foundation Contribution Series 42, 2004).

  76. Hannah, M. J., Wilson, G. J. & Wrenn, J. H. Oligocene and miocene marine palynomorphs from CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antarct. 7, 503–511 (2000).

    Google Scholar 

  77. Hannah, M. J. The palynology of ODP site 1165, Prydz Bay, East Antarctica: a record of Miocene glacial advance and retreat. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 120–133 (2006).

    Google Scholar 

  78. Clowes, C. D., Hannah, M. J., Wilson, G. J. & Wrenn, J. H. Marine palynostratigraphy of the Cape Roberts Drill-holes, Victoria Land Basin, Antarctica, with descriptions of six new species of organic-walled dinoflagellate cyst. Mar. Micropaleontol. 126, 65–84 (2016).

    ADS  Google Scholar 

  79. Bijl, P. et al. Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal. J. Micropalaeontol. 37, 105–138 (2018).

    ADS  Google Scholar 

  80. Benninghoff, W. S. Calculation of pollen and spores density in sediments by addition of exotic pollen in known quantities. Pollen Spores 6, 332–333 (1962).

    Google Scholar 

  81. Harland, R. & Pudsey, C. J. Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. Mar. Micropaleontol. 37, 77–99 (1999).

    ADS  Google Scholar 

  82. Prebble, J. G. et al. An expanded modern dinoflagellate cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations. Mar. Micropaleontol. 101, 33–48 (2013).

    ADS  Google Scholar 

  83. Hartman, J. D., Bijl, P. K. & Sangiorgi, F. A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica). J. Micropalaeontol. 37, 445–497 (2018).

    ADS  Google Scholar 

  84. Zonneveld, K. A. et al. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Rev. Palaeobot. Palynol. 191, 1–197 (2013).

    Google Scholar 

  85. Warny, S. et al. Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology 37, 955–958 (2009).

    ADS  Google Scholar 

  86. Sangiorgi, F. et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  87. Niessen, F., Gebhardt, A. C., Kuhn, G., Magens, D. & Monien, D. Porosity and density of the AND-1B sediment core, McMurdo Sound region, Antarctica: Field consolidation enhanced by grounded ice. Geosphere 9, 489–509 (2013).

    Google Scholar 

  88. Cody, R. D., Levy, R. H., Harwood, D. M. & Sadler, P. M. Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 92–121 (2008).

    Google Scholar 

  89. Florindo, F. et al. Paleomagnetism and biostratigraphy of sediments from Southern Ocean ODP Site 744 (southern Kerguelen Plateau): implications for early-to-middle Miocene climate in Antarctica. Global Planet. Change 110, 434–454 (2013).

    ADS  Google Scholar 

  90. Crampton, J. S. et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years. Proc. Natl Acad. Sci. USA 113, 6868–6873 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Scherer, R., Bohaty, S. M. & Harwood, D. M. Oligocene and lower Miocene siliceous microfossil biostratigraphy of Cape Roberts Project Core CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antarct. 7, 417–442 (2000).

    Google Scholar 

  92. Taviani, M. et al. Palaeontological characterisation and analysis of the AND-2A core, ANDRILL Southern McMurdo Sound Project, Antarctica. Terra Antarct. 15, 113–146 (2008).

    Google Scholar 

  93. Farmer, R. K. The Application of Biostratigraphy and Paleoecology at Southern Ocean Drill Sites to Resolve Early to Middle Miocene Paleoclimatic Events MS thesis, Univ. Nebraska-Lincoln (2011).

  94. Meyers, S. R. The evaluation of eccentricity‐related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography 30, 1625–1640 (2015).

    ADS  Google Scholar 

  95. Meyers, S. R. Astrochron: An R Package for Astrochronology (2014); http://cran.rproject.org/package=astrochron

  96. Meyers, S. R. Cyclostratigraphy and the problem of astrochronologic testing. Earth Sci. Rev. 190, 190–223 (2019).

    ADS  Google Scholar 

  97. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    ADS  Google Scholar 

  98. Taner, M. T. Attributes Revisited. Technical Report (Rock Solid Images, 1992).

  99. Billups, et al. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett. 224, 33–44 (2004).

    ADS  CAS  Google Scholar 

  100. Kochhann, K. G. et al. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum. Paleoceanography 31, 1–17 (2016).

    Google Scholar 

  101. Suganuma, Y. et al. 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama–Brunhes boundary. Earth Planet. Sci. Lett. 296, 443–450 (2010).

    ADS  CAS  Google Scholar 

  102. Suganuma, Y. et al. Post-depositional remanent magnetization lock-in for marine sediments deduced from 10Be and paleomagnetic records through the Matuyama–Brunhes boundary. Earth Planet. Sci. Lett. 311, 39–52 (2011).

    ADS  CAS  Google Scholar 

  103. Roberts, A. P. & Winklhofer, M. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227, 345–359 (2004).

    ADS  CAS  Google Scholar 

  104. Boger, S. D. Antarctica—before and after Gondwana. Gondwana Res. 19, 335–371 (2011).

    ADS  Google Scholar 

  105. Siddoway, C. S. in Antarctica: A Keystone in a Changing World (eds Cooper, A., Raymond, C. and the 10th ISAES Editorial Team) 91–114 (The National Academic Press, USA, 2008).

  106. Mukasa, S. B. & Dalziel, I. W. Marie Byrd Land, West Antarctica: Evolution of Gondwana’s Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions. Geol. Soc. Am. Bull. 112, 611–627 (2000).

    ADS  Google Scholar 

  107. Weaver, S. D., Adams, C. J., Pankhurst, R. J. & Gibson, I. L. Granites of Edward VII Peninsula, Marie Byrd Land: anorogenic magmatism related to Antarctic-New Zealand rifting. Earth Environ. Sci. Trans. R. Soc. Edinb. 83, 281–290 (1992).

    CAS  Google Scholar 

  108. Korhonen, F. J., Saito, S., Brown, M., Siddoway, C. S. & Day, J. M. D. Multiple generations of granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: implications for polyphase intracrustal differentiation in a continental margin setting. J. Petrol. 51, 627–670 (2010).

    ADS  CAS  Google Scholar 

  109. Craddock, J. et al. Precise U-Pb zircon ages and geochemistry of Jurassic granites, Ellsworth-Whitmore terrane, central Antarctica. Geol. Soc. Am. Bull. 129, 118–136 (2017).

    ADS  CAS  Google Scholar 

  110. Pankhurst, R. J., Weaver, S. D., Bradshaw, J. D., Storey, B. C. & Ireland, T. R. Geochronology and geochemistry of pre‐Jurassic superterranes in Marie Byrd Land, Antarctica. J. Geophys. Res. Solid Earth 103, 2529–2547 (1998).

    CAS  Google Scholar 

  111. Flowerdew, M. J. et al. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol. Soc. Am. Bull. 119, 275–288 (2007).

    ADS  CAS  Google Scholar 

  112. Elliot, D. H. & Fanning, C. M. Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: evidence for multiple sources along the Gondwana plate margin. Gondwana Res. 13, 259–274 (2008).

    ADS  CAS  Google Scholar 

  113. Elliot, D. H., Fanning, C. M. & Hulett, S. R. Age provinces in the Antarctic craton: Evidence from detrital zircons in Permian strata from the Beardmore Glacier region, Antarctica. Gondwana Res. 28, 152–164 (2015).

    ADS  Google Scholar 

  114. Goodge, J. W., Williams, I. S. & Myrow, P. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: Detrital record of rift-, passive-, and active-margin sedimentation. Geol. Soc. Am. Bull. 116, 1253–1279 (2004).

    ADS  Google Scholar 

  115. Paulsen, T. S. et al. Detrital mineral ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud terrane and outboard sediment provenance on the Gondwana margin. Gondwana Res. 27, 377–391 (2015).

    ADS  CAS  Google Scholar 

  116. Paulsen, T. S. et al. Correlation and Late-Stage Deformation of Liv Group Volcanics in the Ross-Delamerian Orogen, Antarctica, from New U-Pb Ages. J. Geol. 126, 307–323 (2018).

    ADS  CAS  Google Scholar 

  117. Goodge, J. W., Fanning, C. M., Norman, M. D. & Bennett, V. C. Temporal, isotopic and spatial relations of early Paleozoic Gondwana-margin arc magmatism, central Transantarctic Mountains, Antarctica. J. Petrol. 53, 2027–2065 (2012).

    ADS  CAS  Google Scholar 

  118. Paulsen, T. S. et al. Age and significance of ‘outboard’ high-grade metamorphics and intrusives of the Ross orogen, Antarctica. Gondwana Res. 24, 349–358 (2013).

    ADS  CAS  Google Scholar 

  119. Rowell, A. J. et al. An active Neoproterozoic margin: evidence from the Skelton Glacier area, Transantarctic Mountains. J. Geol. Soc. Lond. 150, 677–682 (1993).

    CAS  Google Scholar 

  120. Encarnación, J. & Grunow, A. Changing magmatic and tectonic styles along the paleo‐Pacific margin of Gondwana and the onset of early Paleozoic magmatism in Antarctica. Tectonics 15, 1325–1341 (1996).

    ADS  Google Scholar 

  121. Goodge, J. W., Hansen, V. L., Peacock, S. M., Smith, B. K. & Walker, N. W. Kinematic evolution of the Miller Range shear zone, central Transantarctic Mountains, Antarctica, and implications for Neoproterozoic to early Paleozoic tectonics of the East Antarctic margin of Gondwana. Tectonics 12, 1460–1478 (1993).

    ADS  Google Scholar 

  122. Van Schmus, W. R., McKenna, L. W., Gonzales, D. A., Fetter, A. H. & Rowell, A. J. U-Pb geochronology of parts of the Pensacola, Thiel, and Queen Maud Mountains, Antarctica. In The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 187–200 (Terra Antartica Publication, 1995).

  123. Stump, E. The Ross Orogen of the Transantarctic Mountains (Cambridge Univ. Press, 1995).

  124. Martin, A. P., Price, R. C., Cooper, A. F. & McCammon, C. A. Petrogenesis of the rifted southern Victoria Land lithospheric mantle, Antarctica, inferred from petrography, geochemistry, thermobarometry and oxybarometry of peridotite and pyroxenite xenoliths from the Mount Morning eruptive centre. J. Petrol. 56, 193–226 (2015).

    ADS  CAS  Google Scholar 

  125. Goodge, J. W., Myrow, P., Williams, I. S. & Bowring, S. A. Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent breakup. J. Geol. 110, 393–406 (2002).

    ADS  Google Scholar 

  126. Stump, E., Gehrels, G., Talarico, F. M. & Carosi, R. Constraints from detrital zircon geochronology on the early deformation of the Ross orogen, Transantarctic Mountains, Antarctica. In Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES (eds Cooper, A. K. et al.) Extended Abstract 166 (USGS Open-File Report 2007-1047, 2007).

  127. Cooper, A. F., Maas, R., Scott, J. M. & Barber, A. J. Dating of volcanism and sedimentation in the Skelton Group, Transantarctic Mountains: implications for the Rodinia-Gondwana transition in southern Victoria Land, Antarctica. Geol. Soc. Am. Bull. 123, 681–702 (2011).

    ADS  CAS  Google Scholar 

  128. Goodge, J. W., Fanning, C. M. & Bennett, V. C. U–Pb evidence of ~1.7 Ga crustal tectonism during the Nimrod Orogeny in the Transantarctic Mountains, Antarctica: implications for Proterozoic plate reconstructions. Precambr. Res. 112, 261–288 (2001).

    ADS  CAS  Google Scholar 

  129. Goodge, J. W. & Fanning, C. M. Mesoarchean and Paleoproterozoic history of the Nimrod Complex, central Transantarctic Mountains, Antarctica: stratigraphic revisions and relation to the Mawson Continent in East Gondwana. Precambr. Res. 285, 242–271 (2016).

    ADS  CAS  Google Scholar 

  130. Veevers, J. J. & Saeed, A. Age and composition of Antarctic bedrock reflected by detrital zircons, erratics, and recycled microfossils in the Prydz Bay–Wilkes Land–Ross Sea–Marie Byrd Land sector (70–240 E). Gondwana Res. 20, 710–738 (2011).

    ADS  CAS  Google Scholar 

  131. Goodge, J. W. & Fanning, C. M. 2.5 by of punctuated Earth history as recorded in a single rock. Geology 27, 1007–1010 (1999).

    ADS  CAS  Google Scholar 

  132. Grindley, G. W., McGregor, V. R. & Walcott, R. I. In Antarctic Geology: Proceedings of the First International Symposium on Antarctic Geology (ed. Adie, R. J.) 206–219 (North Holland, 1964).

  133. Laird, M. G. in The Geology of Antarctica (ed Tingey R. J.) 74–119 (Oxford Univ. Press, 1991).

  134. Goodge, J. W. & Finn, C. A. Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009JB006890 (2010).

    Article  Google Scholar 

  135. Goodge, J. W. & Fanning, C. M. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geol. Soc. Am. Bull. 122, 1135–1159 (2010).

    ADS  CAS  Google Scholar 

  136. Gunn, B. M. & Warren, G. Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarctica. New Zea. Geol. Bull. 71, 157 (1962).

    Google Scholar 

  137. Encarnación, J., Rowell, A. J. & Grunow, A. M. A U-Pb age for the Cambrian Taylor Formation, Antarctica: Implications for the Cambrian time scale. J. Geol. 107, 497–504 (1999).

    ADS  Google Scholar 

  138. Wareham, C. D., Stump, E., Storey, B. C., Millar, I. L. & Riley, T. R. Petrogenesis of the Cambrian Liv Group. A bimodal volcanic rock suite from the Ross orogen, Transantarctic Mountains. Geol. Soc. Am. Bull. 113, 360–372 (2001).

    ADS  CAS  Google Scholar 

  139. Elliot, D. H., Larsen, D., Fanning, C. M., Fleming, T. H. & Vervoort, J. D. The Lower Jurassic Hanson Formation of the Transantarctic Mountains: implications for the Antarctic sector of the Gondwana plate margin. Geol. Mag. 154, 777–803 (2016).

    ADS  Google Scholar 

  140. Elliot, D. H., Fanning, C. M., Isbell, J. L. & Hulett, S. R. W. The Permo-Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. Geosphere 13, 155–178 (2017).

    ADS  Google Scholar 

  141. Elsner, M., Schöner, R., Gerdes, A. & Gaupp, R. Reconstruction of the early Mesozoic plate margin of Gondwana by U–Pb ages of detrital zircons from northern Victoria Land, Antarctica. Geol. Soc. Lond. Spec. Publ. 383, 211–232 (2013).

    ADS  CAS  Google Scholar 

  142. Paulsen, T., Deering, C., Sliwinski, J., Bachmann, O. & Guillong, M. New detrital zircon age and trace element evidence for 1450 Ma igneous zircon sources in East Antarctica. Precambr. Res. 300, 53–58 (2017).

    ADS  CAS  Google Scholar 

  143. Zurli, L. et al. Detrital zircons from Late Paleozoic Ice Age sequences in Victoria Land (Antarctica): New constraints on the glaciation of southern Gondwana. Geol. Soc. Am. Bull. (2021).

  144. Welke, B. et al. Applications of detrital geochronology and thermochronology from glacial deposits to the Paleozoic and Mesozoic thermal history of the Ross Embayment, Antarctica. Geochem. Geophys. Geosyst. 17, 2762–2780 (2016).

    ADS  CAS  Google Scholar 

  145. Vogel, M. B., Ireland, T. R. & Weaver, S. D. The multistage history of the Queen Maud Batholith, La Gorce Mountains, central Transantarctic Mountains. In Proc. 8th Int. Symp. Antarctic Earth Sciences Wellington 1999 (eds Gamble, J. A., Skinner, D. N. B., Henrys, S. A.) 153–159 (Royal Society of New Zealand, 2002).

  146. Gootee, B. & Stump, E. in Antarctica (eds Fütterer D. K., Damaske D., Kleinschmidt G., Miller H. & Tessensohn F.) 191–194 (Springer, 2006).

  147. Barrett, P. J. in Geology of Antarctica (ed. Tingey, R. J.) 120–152 (Clarendon Press, 1991).

  148. Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E. & Corr, H. Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of the Wilkes Subglacial Basin. Tectonophysics 478, 62–77 (2009).

    ADS  Google Scholar 

  149. Paxman, G. J. et al. Geology and Geomorphology of the Pensacola‐Pole Basin, East Antarctica. Geochem. Geophys. Geosyst. 20, 2786–2807 (2019).

    ADS  Google Scholar 

  150. Elliot, D. H. The Hanson Formation: a new stratigraphical unit in the Transantarctic Mountains, Antarctica. Antarct. Sci. 8, 389–394 (1996).

    ADS  Google Scholar 

  151. Elliot, D. H. & Fleming, T. H. Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Res. 7, 223–237 (2004).

    ADS  CAS  Google Scholar 

  152. Burgess, S. D., Bowring, S. A., Fleming, T. H. & Elliot, D. H. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).

    ADS  CAS  Google Scholar 

  153. Encarnación, J., Fleming, T. H., Elliot, D. H. & Eales, H. V. Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24, 535–538 (1996).

    ADS  Google Scholar 

  154. Cook, C. P. et al. Glacial erosion of East Antarctica in the Pliocene: A comparative study of multiple marine sediment provenance tracers. Chem. Geol. 466, 199–218 (2017).

    ADS  CAS  Google Scholar 

  155. Adams, C. J. Geochronological studies of the Swanson Formation of Marie Byrd Land, West Antarctica, and correlation with northern Victoria Land, East Antarctica, and South Island, New Zealand. N. Z. J. Geol. Geophys. 29, 345–358 (1986).

    CAS  Google Scholar 

  156. Yakymchuk, C. et al. Anatectic Reworking and Differentiation of Continental Crust Along the Active Margin of Gondwana: A Zircon Hf–O Perspective from West Antarctica (Geological Society London, Special Publication 383, 2013); https://doi.org/10.1144/SP383.7

  157. Yakymchuk, C. et al. Paleozoic evolution of western Marie Byrd Land, Antarctica. Bull. Geol. Soc. Am. 127, 1464–1484 (2015).

    CAS  Google Scholar 

  158. Simões Pereira, P. et al. The geochemical and mineralogical fingerprint of West Antarctica’s weak underbelly: Pine Island and Thwaites glaciers. Chem. Geol. 550, 119649 (2020).

    ADS  Google Scholar 

  159. Adams, C. J. Geochronology of granite terranes in the Ford Ranges, Marie Byrd Land, West Antarctica. N. Z. J. Geol. Geophys. 30, 51–72 (1987).

    CAS  Google Scholar 

  160. LeMasurier, W. E. et al. Volcanoes of the Antarctic Plate and Southern Ocean Vol. 48 (American Geophysical Union, 1990).

  161. Licht, K. J. et al. Evidence for extending anomalous Miocene volcanism at the edge of the East Antarctic craton. Geophys. Res. Lett. 45, 3009–3016 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brodie, J. W. A shallow shelf around Franklin Island in the Ross Sea, Antarctica. N. Z. J. Geol. Geophys. 2, 108–119 (1959).

    Google Scholar 

  163. Lawver, L., Lee, J., Kim, Y. & Davey, F. Flat-topped mounds in western Ross Sea: Carbonate mounds or subglacial volcanic features? Geosphere 8, 645–653 (2012).

    ADS  Google Scholar 

  164. Di Vincenzo, G., Bracciali, L., Del Carlo, P., Panter, K. & Rocchi, S. 40Ar–39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): correlations with the Erebus Volcanic Province and implications for the age model of the core. Bull. Volcanol. 72, 487–505 (2010).

    ADS  Google Scholar 

  165. Panter, K. S. et al. Melt origin across a rifted continental margin: a case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica. J. Petrol. 59, 517–558 (2018).

    ADS  CAS  Google Scholar 

  166. McIntosh, W. C. 40Ar/39Ar geochronology of tephra and volcanic clasts in CRP-2A, Victoria Land Basin, Antarctica. Terra Antarct. 7, 621–630 (2000).

    Google Scholar 

  167. LeMasurier, W. E. & Rocchi, S. Terrestrial record of post‐Eocene climate history in Marie Byrd Land, West Antarctica. Geogr. Ann., Ser. A 87, 51–66 (2005).

    Google Scholar 

  168. Rocchi, S., LeMasurier, W. E. & Di Vincenzo, G. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Bull. Geol. Soc. Am. 118, 991–1005 (2006).

    Google Scholar 

  169. LeMasurier, W. Shield volcanoes of Marie Byrd Land, West Antarctic rift: oceanic island similarities, continental signature, and tectonic controls. Bull. Volcanol. 75, 726 (2013).

    ADS  Google Scholar 

  170. Behrendt, J. C. et al. Geophysical studies of the West Antarctic rift system. Tectonics 10, 1257–1273 (1991).

    ADS  Google Scholar 

  171. McDougall, I. & Harrison, T. M. Geochronology and Thermochronology by the 40Ar/39Ar Method (Oxford Univ. Press, 1999).

  172. Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2001).

    ADS  CAS  Google Scholar 

  173. Morrison, A. D. & Reay, A. Geochemistry of Ferrar Dolerite sills and dikes at Terra Cotta Mountain, south Victoria Land, Antarctica. Antarct. Sci. 7, 73–85 (1995).

    ADS  Google Scholar 

  174. Cox, S. C., Turnbull, I. M., Isaac, M. J., Townsend, D. B. & Smith Lyttle, B. Geology of Southern Victoria Land, Antarctica (Institute of Geological & Nuclear, 2012).

  175. Ford, A. B. Stratigraphy of the Layered Gabbroic Dufek Intrusion, Antarctica (US Govt. Print. Off., 1976; http://pubs.er.usgs.gov/publication/b1405D

  176. Borg, S. G., Depaolo, D. J. & Smith, B. M. Isotopic structure and tectonics of the central Transantarctic Mountains. J. Geophys. Res. Solid Earth 95, 6647–6667 (1990).

    Google Scholar 

  177. Cox, S. C., Parkinson, D. L., Allibone, A. H. & Cooper, A. F. Isotopic character of Cambro‐Ordovician plutonism, southern Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 43, 501–520 (2000).

    CAS  Google Scholar 

  178. Gunner, J. Isotopic and Geochemical Studies of the Pre-Devonian Basement Complex, Beardmore Glacier Region, Antarctica (Ohio State Univ. Institute of Polar Studies Report No. 41, 1976).

  179. Roy, M., van de Flierdt, T., Hemming, S. R. & Goldstein, S. L. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the Southern Ocean. Chem. Geol. 244, 507–519 (2007).

    ADS  CAS  Google Scholar 

  180. Behrendt, J. C. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet—A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE. Tectonophysics 585, 124–136 (2013).

    ADS  Google Scholar 

  181. Lough, A. C. et al. Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica. Nat. Geosci. 6, 1031–1035 (2013).

    ADS  CAS  Google Scholar 

  182. Schroeder, D. M., Blankenship, D. D., Young, D. A. & Quartini, E. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Proc. Natl Acad. Sci. USA 111, 9070–9072 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ehrmann, W. U., Melles, M., Kuhn, G. & Grobe, H. Significance of clay mineral assemblages in the Antarctic Ocean. Mar. Geol. 107, 249–273 (1992).

    ADS  CAS  Google Scholar 

  184. Fagel, N. Clay minerals, deep circulation and climate. Proxies Late Cenozoic Paleoceanogr. 1, 139–184 (2007).

    Google Scholar 

  185. Kristoffersen, Y., Strand, K., Vorren, T., Harwood, D. & Webb, P. Pilot shallow drilling on the continental shelf, Dronning Maud Land, Antarctica. J. Antarct. Sci. 4, 463–470 (2000).

    ADS  Google Scholar 

  186. Ehrmann, W. et al. Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence. Antarct. Sci. 23, 471–486 (2011).

    ADS  Google Scholar 

  187. Hillenbrand, C. D., Grobe, H., Diekmann, B., Kuhn, G. & Fütterer, D. K. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica)–Relation to modern environmental conditions. Mar. Geol. 193, 253–271 (2003).

    ADS  Google Scholar 

  188. Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).

    ADS  CAS  PubMed  Google Scholar 

  189. Zonneveld, K. A. F., Bockelmann, F. & Holzwarth, U. Selective preservation of organic-walled dinoflagellate cysts as a tool to quantify past net primary production and bottom water oxygen concentrations. Mar. Geol. 237, 109–126 (2007).

    ADS  Google Scholar 

  190. Prebble, J. G., Hannah, M. J. & Barrett, P. J. Changing Oligocene climate recorded by palynomorphs from two glacio-eustatic sedimentary cycles, Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 58–70 (2006).

    Google Scholar 

  191. Kulhanek, D. K. et al. Revised chronostratigraphy of DSDP Site 270 and late Oligocene to early Miocene paleoecology of the Ross Sea sector of Antarctica. Global Planet. Change 178, 46–64 (2019).

    ADS  Google Scholar 

  192. Feakins, S., Warny, S. & Lee, J. E. Hydrologic cycling over Antarctica during the middle Miocene warming. Nat. Geosci. 5, 557–560 (2012).

    ADS  CAS  Google Scholar 

  193. De Santis, L., Prato, S., Brancolini, G., Lovo, M. & Torelli, L. The Eastern Ross Sea continental shelf during the Cenozoic: implications for the West Antarctic ice sheet development. Global Planet. Change 23, 173–196 (1999).

    ADS  Google Scholar 

  194. Ford, A. B. & Barrett, P. J. Basement rocks of the south-central Ross Sea, Site 270, DSDP Leg 28. Initial Rep. Deep Sea Drill. Proj. 28, 861–868 (1975).

    Google Scholar 

  195. Goldich, S. S., Treves, S. B., Suhr, N. H. & Stuckless, J. S. Geochemistry of the Cenozoic volcanic rocks of Ross Island and vicinity, Antarctica. J. Geol. 83, 415–435 (1975).

    ADS  CAS  Google Scholar 

  196. Tulaczyk, S., Kamb, B., Scherer, R. P. & Engelhardt, H. F. Sedimentary processes at the base of a West Antarctic ice stream; constraints from textural and compositional properties of subglacial debris. J. Sediment. Res. 68, 487–496 (1998).

    ADS  Google Scholar 

  197. Rosenqvist, I. T. Origin and mineralogy glacial and interglacial clays of southern Norway. Clays Clay Miner. 23, 153–159 (1975).

    ADS  CAS  Google Scholar 

  198. Blum, J. D. & Erel, Y. Rb/ Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204 (1997).

    ADS  CAS  Google Scholar 

  199. Eisenhauer, A. et al. Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chem. Geol. 158, 173–188 (1999).

    ADS  CAS  Google Scholar 

  200. Haran, T. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 1. Boulder, Colorado, USA., NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.7265/N5KP8037 (2014).

Download references

Acknowledgements

This research used data and samples provided by the International Ocean Discovery Program (IODP), which is sponsored by the US National Science Foundation (NSF) and participating countries under the management of Joint Oceanographic Institutions. J.W.M. was supported by a NERC DTP studentship (grant number NE/L002515/1). Neodymium and Sr isotope analysis and U–Pb dating of detrital zircons was funded through NERC UK IODP grant NE/R018219/1. Clast counts performed by L.Z., F.T. and M.P. and the participation of L.D. and F.C. was funded by the Italian National Antarctic Research Program (PNRA, Programma Nazionale Ricerche in Antartide), grant numbers PNRA18-00233, PNRA16-00016 and PNRA18-00002. R.M.M. was supported by Royal Society Te Apārangi Marsden Fund (18-VUW-089). R.M.M., J.G.P. and R.L. were supported by the New Zealand Ministry for Business Innovation and Employment grant ANTA1801. P.V. was partially funded by NERC Standard Grant NE/T001518/1. L.F.P. has been funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 792773 WAMSISE. T.E.v.P. has been funded by NERC grants NE/R018235/1 and NE/T012285/1. D.K.K. was supported by the IODP JOIDES Resolution Science Operator and National Science Foundation (grant numbers OCE-1326927 and OPP-2000995). A.E.S. and I.B. were supported by the US Science Support Program. Southern Transantarctic Mountain rock samples for Nd and Sr isotope analysis were provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-1643713. We thank B. Coles, K. Kreissig and P. Simões Pereira for technical support. We also thank the numerous scientists who collected invaluable site survey data and developed the proposals and hypotheses that ultimately led to IODP Expedition 374. Expedition 374 was conducted under Antarctic Conservation Act Permit Number: ACA 2018-027 (permit holder: Bradford Clement, JRSO, IODP, TAMU, College Station, TX 77845).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.W.M., T.v.d.F., R.M.M., L.D.S. and A.E.S. designed the research in collaboration with the entire IODP Expedition 374 science party. J.W.M. conducted the Nd and Sr isotope analyses. L.Z., F.T. and M.P. performed the clast counts. J.W.M., P.V. and A.C. produced the zircon U–Pb data. F.B. and V.B.R. collected the clay mineralogy data. F.S., J.G.P. and C.B. performed the palynological counts and interpretations. S.R.H. provided the hornblende 40Ar/39Ar data. K.J.L. provided guidance on geochronology interpretations. L.F.P., F.C. and L.D.S. calculated the sediment volume estimate. R.L., R.M.M., T.E.v.P., D.H., D.K.K. and E.M.G. improved the shipboard age model. N.B.S. and S.R.M. conducted the astrochronological analyses. D.K.K. provided the XRF data. E.G. and B.K. helped integrate sediment provenance data with numerical modelling. I.B., G.K. and J.P.D. advised on specific technical aspects of the manuscript. J.W.M. created the figures and wrote the text with assistance from all authors and particular guidance from T.v.d.F., C.D.H., E.G. and M.J.S. All Expedition 374 scientists contributed to the collection of shipboard datasets and the interpretations of the data.

Corresponding author

Correspondence to J. W. Marschalek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Patrick Blaser, Maria Fernanda Sanchez-Goni, Kenneth Miller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Age model constraints below 75 mbsf at Site U1521.

From left to right are: depth (metres below sea floor), core number, core recovery (black = recovered), inclination before and after 10 and 20 mT demagnetisation (black, blue and red points, successively), and corresponding polarity interpretations (black = normal, white = reversed, grey = no interpretation). Note that the polarity interpretations have been simplified compared to those in the cruise report26, with small uncertainties related to core gaps removed. Note Site U1521 is in the Southern Hemisphere. The geomagnetic polarity timescale49 is shown across the top of the plot. The orange shaded regions indicate uncertainties in our age model and the dashed line marks an alternative line of correlation for Sequence 3. The blue line indicates the age model for Sequence 2 based on our astrochronological analyses, with the light blue shading indicating the ~20 kyr uncertainty associated with the phase relationship between clast abundances and obliquity. This astrochronological anchoring agrees closely with linear interpolations between magnetostratigraphic tie points (black line).

Extended Data Fig. 2 Selected palynological counts compared to strontium and neodymium isotope data.

Palynological data are reported as percentages (crosses) and counts/gram (circles). The blue shaded area represents Sequence 2, which is interpreted as consisting of sediments with a West Antarctic provenance. Error bars indicate a 95% confidence interval48.

Extended Data Fig. 3 Down-core clast and clay mineral distribution.

The blue shaded area highlights Sequence 2, which is interpreted to consist of sediments with a West Antarctic provenance. a) Core lithology. b) Chronostratigraphic sequences. c) Clast abundance. d) Percentages of different clast lithologies. e) Ratio between dolerite and total number of clasts (red) and volcanic rocks and total number of clasts (green), with 95% confidence interval shown as pale shading48. f) Clay mineral abundances.

Extended Data Fig. 4 Map of approximate ɛNd values in rocks and offshore sediments from around the Ross Sea embayment.

Epsilon Nd values are overlain on MODIS imagery200 and the BedMachine Antarctica V1 modern bed topography43,44, with the MEaSUREs grounding line and ice sheet margin shown45,46. The approximate boundary between West and East Antarctic lithosphere is shown using a white dashed line47. Modern/late Holocene and terrestrial till samples are represented by circles with the same colour bar28,30,55. Although ice flow patterns have changed since their deposition, Last Glacial Maximum tills in offshore sediments are also plotted as squares to improve spatial coverage28. Individual samples and references are reported in Supplementary Table 1. The bedrock map was produced by Kriging between sample locations within a group, then masking to the outcrop area. Beacon and Ferrar Group (Fig. 1) rocks are often not differentiated in geological mapping, but are roughly equal volumetrically136, with the uppermost Beacon Supergroup formations having a Ferrar-like isotopic signature139. We hence assume a 60% Ferrar, 40% Beacon mixture is representative.

Extended Data Fig. 5 Kernel density estimate plots for literature measurements of rock ɛNd compared to measurements on fine-grained Miocene detritus from Site U1521.

For references and a list of all the data, see Supplementary Table 1. The height of the curve indicates the density of measurements and n the total number of samples analysed. Colour scheme is identical to Fig. 1, with sediments in grey.

Extended Data Fig. 6 Kernel density estimates for hornblende 40Ar/39Ar ages compared to zircon U-Pb ages younger than 1500 Ma.

The two dating methods are show in red and blue, respectively. Bold letters correspond with those in Fig. 3. The positions of major peaks and number of grains analysed are labelled in the corresponding colours. Stratigraphic position is shown in Fig. 2.

Extended Data Fig. 7 Close up of the Site U1521 interval with a West Antarctic provenance.

The stratigraphic log (a) is displayed alongside the percentage of reworked dinocysts (b), basalt clast fraction (c), relative abundance of smectite (d), Nd isotope data (e) and Fe/Ti ratios determined by X-ray fluorescence scanning (f).

Extended Data Fig. 8 Correlation of Site U1521 magnetostratigraphic tie points.

Shown are correlations between the AND-2A record11, Site U152126 and the GPTS49.

Extended Data Table 1 Age tie points for Site U1521 below 75 mbsf
Extended Data Table 2 Values used in the erosion rate calculation

Supplementary information

Supplementary Information

This file contains information on the lithologies at IODP Site U1521, before summarising the rock types and tectonic history of the Ross Sea sector. We also provide a more detailed discussion of our sediment provenance datasets, plus suggested provenance interpretations for other lithological units. Additional supplementary methods are also described.

Peer Review File

Supplementary Table 1

Compiled Nd and Sr isotope data from literature sources are presented in this excel spreadsheet. These data were used to interpret the isotope ratios measured at Site U1521 and to create Extended Data Figures 4 and 5. References are given in a separate tab.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marschalek, J.W., Zurli, L., Talarico, F. et al. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 600, 450–455 (2021). https://doi.org/10.1038/s41586-021-04148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04148-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing