Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progress and prospects in magnetic topological materials

Abstract

Magnetic topological materials represent a class of compounds with properties that are strongly influenced by the topology of their electronic wavefunctions coupled with the magnetic spin configuration. Such materials can support chiral electronic channels of perfect conduction, and can be used for an array of applications, from information storage and control to dissipationless spin and charge transport. Here we review the theoretical and experimental progress achieved in the field of magnetic topological materials, beginning with the theoretical prediction of the quantum anomalous Hall effect without Landau levels, and leading to the recent discoveries of magnetic Weyl semimetals and antiferromagnetic topological insulators. We outline recent theoretical progress that has resulted in the tabulation of, for the first time, all magnetic symmetry group representations and topology. We describe several experiments realizing Chern insulators, Weyl and Dirac magnetic semimetals, and an array of axionic and higher-order topological phases of matter, and we survey future perspectives.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Interplay between magnetic orders and topology.
Fig. 2: Magnetic topological insulators—realizations and MnBi2Te4 case study.
Fig. 3: Magnetic topological semimetals—Co3Sn2S2 case study.

References

  1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  CAS  PubMed  Google Scholar 

  2. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  CAS  PubMed  Google Scholar 

  3. Kitaev, A. Y. U. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). This paper shows how to implement topological quantum computing in magnetic superconducting systems.

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  4. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    ADS  CAS  PubMed  Google Scholar 

  5. Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017). This paper represents the first application of a Weyl semimetal for catalysis.

    Google Scholar 

  6. Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020). This paper represents the first high-throughput magnetic topological calculations.

    ADS  CAS  PubMed  Google Scholar 

  7. Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021). This paper develops the full theory of topological insulators and metals in magnetic groups.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 4, aat8685 (2018).

    ADS  Google Scholar 

  9. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). This paper shows the relevance of the distinct surface potentials imposed by three different terminations on the modification of the Fermi-arc contour and Weyl node connectivity.

    ADS  CAS  PubMed  Google Scholar 

  10. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). This paper predicts and realizes an antiferromagnetic topological insulator in a bulk material for the first time.

    ADS  CAS  PubMed  Google Scholar 

  11. Noky, J., Zhang, Y., Gooth, J., Felser, C. & Sun, Y. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. npj Comput. Mater. 6, 77 (2020). This paper systematically investigates the Berry curvature of all magnetic Heusler compounds.

    ADS  CAS  Google Scholar 

  12. Haldane, F. D. M. Model for a quantum Hall Effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988). This paper realizes the first model of a magnetic topological insulators (Chern insulators).

    ADS  CAS  PubMed  Google Scholar 

  13. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  CAS  PubMed  Google Scholar 

  14. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Google Scholar 

  15. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  CAS  PubMed  Google Scholar 

  16. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    ADS  CAS  Google Scholar 

  17. Chang, C.-Z. & Li, M. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators. J. Phys. Condens. Matter 28, 123002 (2016).

    ADS  PubMed  Google Scholar 

  18. Hor, Y. S. et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3. Phys. Rev. B 81, 195203 (2010).

    ADS  Google Scholar 

  19. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    ADS  CAS  PubMed  Google Scholar 

  20. Chang, C.-Z. et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

    ADS  CAS  PubMed  Google Scholar 

  21. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010). This paper describes the first model of an antiferromagnetic topological insulator.

  22. Fang, C., Gilbert, M. J. & Bernevig, B. A. Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 88, 085406 (2013).

    ADS  Google Scholar 

  23. Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon, 1972).

  24. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

    Google Scholar 

  25. Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    ADS  CAS  PubMed  Google Scholar 

  26. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, aaw5685 (2019).

    ADS  Google Scholar 

  27. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    ADS  CAS  PubMed  Google Scholar 

  28. Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl Sci. Rev. 7, 1280–1287 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Google Scholar 

  30. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  31. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    ADS  Google Scholar 

  32. Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    ADS  Google Scholar 

  33. Zhang, F., Kane, C. L. & Mele, E. J. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013).

    ADS  PubMed  Google Scholar 

  34. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS  PubMed  Google Scholar 

  35. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Google Scholar 

  36. Coh, S. & Vanderbilt, D. Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B 88, 121106 (2013).

    ADS  Google Scholar 

  37. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  PubMed  Google Scholar 

  38. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, aat0346 (2018).

    ADS  Google Scholar 

  39. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    ADS  CAS  PubMed  Google Scholar 

  41. Turner, A. M., Zhang, Y. & Vishwanath, A. Entanglement and inversion symmetry in topological insulators. Phys. Rev. B 82, 241102 (2010).

    ADS  Google Scholar 

  42. Wieder, B. J. & Bernevig, B. A. The axion insulator as a pump of fragile topology. Preprint at https://arxiv.org/abs/1810.02373 (2018).

  43. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017). This paper realizes the first step towards the realization of an axion insulator by engineered heterostructures with modulation-doped topological insulator films.

    ADS  CAS  PubMed  Google Scholar 

  44. Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    ADS  CAS  PubMed  Google Scholar 

  45. Xu, S.-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

    CAS  Google Scholar 

  46. Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    ADS  Google Scholar 

  47. Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019). First realization of an axion quasiparticle in a charge-density wave Weyl semimetal.

    ADS  CAS  PubMed  Google Scholar 

  48. Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021).

    CAS  Google Scholar 

  49. Ahn, J. & Yang, B.-J. Symmetry representation approach to topological invariants in C2zT-symmetric systems. Phys. Rev. B 99, 235125 (2019).

    ADS  MathSciNet  CAS  Google Scholar 

  50. Varnava, N., Souza, I. & Vanderbilt, D. Axion coupling in the hybrid Wannier representation. Phys. Rev. B 101, 155130 (2020).

    ADS  CAS  Google Scholar 

  51. Shiozaki, K., Sato, M. & Gomi, K. Topological crystalline materials: general formulation, module structure, and wallpaper groups. Phys. Rev. B 95, 235425 (2017).

    ADS  Google Scholar 

  52. Fang, C. & Fu, L. New classes of three-dimensional topological crystalline insulators: nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015). This paper realizes the first models of rotational anomaly topological insulators.

    ADS  Google Scholar 

  53. Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius insulator and higher-order topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020). This paper predicts several topological phases in the MnBiTe family.

    ADS  CAS  PubMed  Google Scholar 

  54. Aliev, Z. S. et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: synthesis and crystal structure. J. Alloys Compd. 789, 443–450 (2019).

    CAS  Google Scholar 

  55. Klimovskikh, I. I. et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulator family. npj Quantum Mater. 12, 20 (2019).

    Google Scholar 

  56. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    ADS  CAS  PubMed  Google Scholar 

  57. Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018).

    ADS  CAS  PubMed  Google Scholar 

  58. Ma, J. et al. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv. 3, e1602415 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  59. Liang, S. et al. A gap-protected zero-Hall effect state in the quantum limit of the non-symmorphic metal KHgSb. Nat. Mater. 18, 443–447 (2019).

    ADS  CAS  PubMed  Google Scholar 

  60. Hu, C. et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13. Sci. Adv. 6, aba4275 (2020).

    ADS  Google Scholar 

  61. Fang, C. & Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. Sci. Adv. 5, aat2374 (2019).

    ADS  Google Scholar 

  62. Wei, P. et al. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 110, 186807 (2013).

    ADS  PubMed  Google Scholar 

  63. Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    ADS  CAS  PubMed  Google Scholar 

  64. Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator – ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    ADS  CAS  PubMed  Google Scholar 

  65. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS  Google Scholar 

  66. Hirahara, T. et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Lett. 17, 3493–3500 (2017).

    ADS  CAS  PubMed  Google Scholar 

  67. Hirahara, T. et al. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nat. Commun. 11, 4821 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krieger, J. A. et al. Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators. Phys. Rev. B 96, 184402 (2017).

    ADS  Google Scholar 

  69. Alegria, L. D. et al. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures. Appl. Phys. Lett. 105, 053512 (2014).

    ADS  Google Scholar 

  70. Wolf, S. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    ADS  CAS  PubMed  Google Scholar 

  71. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019). This paper reviews the basic concepts of magnetic topological insulators, their experimental realization and the verification of their emergent properties.

    Google Scholar 

  72. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    ADS  CAS  PubMed  Google Scholar 

  73. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    ADS  CAS  PubMed  Google Scholar 

  74. Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  75. Beidenkopf, H. et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7, 939–943 (2011).

    CAS  Google Scholar 

  76. Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. 112, 1316–1321 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rienks, E. D. L. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019).

    ADS  CAS  PubMed  Google Scholar 

  78. Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    CAS  Google Scholar 

  79. Li, H. et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019).

    CAS  Google Scholar 

  80. Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS  Google Scholar 

  81. Yuan, Y. et al. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Lett. 20, 3271–3277 (2020).

    ADS  CAS  PubMed  Google Scholar 

  82. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    ADS  CAS  PubMed  Google Scholar 

  83. Lin, X. & Ni, J. Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2. Phys. Rev. B 100, 085403 (2019).

    ADS  CAS  Google Scholar 

  84. Xu, J., Phelan, W. A. & Chien, C.-L. Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 19, 8250–8254 (2019).

    ADS  CAS  PubMed  Google Scholar 

  85. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS  CAS  PubMed  Google Scholar 

  86. Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).

    ADS  CAS  PubMed  Google Scholar 

  87. Wang, L.-L. et al. Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2. Phys. Rev. B 99, 245147 (2019).

    ADS  CAS  Google Scholar 

  88. Hua, G. et al. Dirac semimetal in type-IV magnetic space groups. Phys. Rev. B 98, 201116 (2018).

    ADS  Google Scholar 

  89. Ma, J. et al. Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2. Adv. Mater. 32, 1907565 (2020).

    CAS  Google Scholar 

  90. Xu, Y., Song, Z., Wang, Z., Weng, H. & Dai, X. Higher-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 122, 256402 (2019).

    ADS  CAS  PubMed  Google Scholar 

  91. Gui, X. et al. A new magnetic topological quantum material candidate by design. ACS Cent. Sci. 5, 900–910 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sato, T. et al. Signature of band inversion in the antiferromagnetic phase of axion insulator candidate EuIn2As2. Phys. Rev. Res. 2, 033342 (2020).

    CAS  Google Scholar 

  93. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Google Scholar 

  94. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  95. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    ADS  Google Scholar 

  96. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  97. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  CAS  PubMed  Google Scholar 

  98. Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS  Google Scholar 

  99. Li, X. et al. Anomalous Nernst and Righi–Leduc rffects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    ADS  PubMed  Google Scholar 

  100. Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (2016).

    ADS  Google Scholar 

  101. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    CAS  Google Scholar 

  102. Noky, J., Gayles, J., Felser, C. & Sun, Y. Strong anomalous Nernst effect in collinear magnetic Weyl semimetals without net magnetic moments. Phys. Rev. B 97, 220405 (2018).

    ADS  CAS  Google Scholar 

  103. Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. A. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    ADS  PubMed  Google Scholar 

  104. Solin, N. I. & Chebotaev, N. M. Magnetoresistance and Hall effect of the magnetic semiconductor HgCr2Se4 in strong magnetic fields. Phys. Solid State 39, 754–758 (1997).

    ADS  Google Scholar 

  105. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    ADS  Google Scholar 

  106. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  PubMed  Google Scholar 

  107. Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

    ADS  Google Scholar 

  108. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    ADS  Google Scholar 

  109. Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).

    CAS  Google Scholar 

  110. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    ADS  CAS  PubMed  Google Scholar 

  111. Nie, S., Weng, H. & Prinz, F. B. Topological nodal-line semimetals in ferromagnetic rare-earth-metal monohalides. Phys. Rev. B 99, 035125 (2019).

    ADS  CAS  Google Scholar 

  112. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    MathSciNet  PubMed  MATH  Google Scholar 

  113. Cano, J., Bradlyn, B. & Vergniory, M. G. Multifold nodal points in magnetic materials. APL Mater. 7, 101125 (2019).

    ADS  Google Scholar 

  114. Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    ADS  PubMed  Google Scholar 

  115. Wieder, B. J. et al. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun. 11, 627 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lin, M. & Hughes, T. L. Topological quadrupolar semimetals. Phys. Rev. B 98, 241103 (2018).

    ADS  CAS  Google Scholar 

  117. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).

    ADS  CAS  PubMed  Google Scholar 

  119. Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).

    MathSciNet  Google Scholar 

  120. Howard, S. et al. Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 12, 4269 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Muechler, L. et al. Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2. Phys. Rev. B 101, 115106 (2020).

    ADS  CAS  Google Scholar 

  122. Ma, D.-S. et al. Spin-orbit-induced topological flat bands in line and split graphs of bipartite lattices. Phys. Rev. Lett. 125, 266403 (2020).

    ADS  CAS  PubMed  Google Scholar 

  123. Xu, Y. et al. Electronic correlations and flattened band in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 3985 (2019).

    ADS  Google Scholar 

  124. Yin, J. X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    CAS  Google Scholar 

  125. Li, G. et al. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation. Sci. Adv. 5, eaaw9867 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  127. Nie, S., Xu, G., Prinz, F. B. & Zhang, S.-C. Topological semimetal in honeycomb lattice LnSI. Proc. Natl Acad. Sci. 114, 10596–10600 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    ADS  CAS  PubMed  Google Scholar 

  129. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). The paper discusses surface and bulk Dirac fermions as well as flat bands in the antiferromagnetic kagome metal FeSn.

    ADS  CAS  PubMed  Google Scholar 

  130. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). First report of a large anomalous Hall effect in an antiferromagnet Mn3Sn with vanishingly small magnetization.

    ADS  CAS  PubMed  Google Scholar 

  131. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  132. Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). A topological kagome magnet with strong out-of-plane magnetization realized in TbMn6Sn6 and identified by scanning tunnelling microscopy.

    ADS  CAS  PubMed  Google Scholar 

  134. Asaba, T. et al. Anomalous Hall effect in the kagome ferrimagnet GdMn6Sn6. Phys. Rev. B 101, 174415 (2020).

    ADS  CAS  Google Scholar 

  135. Ma, W. et al. Rare earth engineering in RMn6Sn6 (R = Gd−Tm, Lu) topological kagome magnets. Phys. Rev. Lett. 126, 246602 (2021).

    ADS  CAS  PubMed  Google Scholar 

  136. Yin, J.-X. et al. Giant and anisotropic spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    ADS  CAS  PubMed  Google Scholar 

  137. Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016). This paper reports the first prediction of ferromagnetic Weyl semimetal.

    ADS  PubMed  Google Scholar 

  138. Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    ADS  Google Scholar 

  139. Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011). This article summarizes the wide range of properties in the family of Heusler compounds.

    CAS  Google Scholar 

  140. Li, P. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. Manna, K., Sun, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244–256 (2018).

    ADS  CAS  Google Scholar 

  142. Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019).

    ADS  CAS  Google Scholar 

  143. Manna, K. et al. From colossal to zero: controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Phys. Rev. X 8, 041045 (2018).

    CAS  Google Scholar 

  144. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    ADS  CAS  PubMed  Google Scholar 

  145. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    ADS  CAS  PubMed  Google Scholar 

  146. Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac–Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS  Google Scholar 

  147. Shekhar, C. et al. Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd). Proc. Natl Acad. Sci. USA 115, 9140–9144 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kumar, N., Guin, S. N., Felser, C. & Shekhar, C. Planar Hall effect in the Weyl semimetal GdPtBi. Phys. Rev. B 98, 041103 (2018).

    ADS  CAS  Google Scholar 

  149. Schindler, C. et al. Anisotropic electrical and thermal magnetotransport in the magnetic semimetal GdPtBi. Phys. Rev. B 101, 125119 (2020).

    ADS  CAS  Google Scholar 

  150. Yu, J., Yan, B. & Liu, C.-X. Model Hamiltonian and time reversal breaking topological phases of antiferromagnetic half-Heusler materials. Phys. Rev. B 95, 235158 (2017).

    ADS  Google Scholar 

  151. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  CAS  PubMed  Google Scholar 

  152. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS  Google Scholar 

  153. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 12, 73–78 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Google Scholar 

  155. Suzuki, T. et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365, 377–381 (2019).

    ADS  CAS  PubMed  Google Scholar 

  156. Puphal, P. et al. Topological magnetic phase in the candidate Weyl semimetal CeAlGe. Phys. Rev. Lett. 124, 017202 (2020).

    ADS  CAS  PubMed  Google Scholar 

  157. Sanchez, D. S. et al. Observation of Weyl fermions in a magnetic non-centrosymmetric crystal. Nat. Commun. 11, 3356 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xu, S.-Y. et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  159. Guo, H., Ritter, C. & Komarek, A. C. Direct determination of the spin structure of Nd2Ir2O7 by means of neutron diffraction. Phys. Rev. B 94, 161102 (2016).

    ADS  Google Scholar 

  160. Goswami, P., Roy, B. & Das Sarma, S. Competing orders and topology in the global phase diagram of pyrochlore iridates. Phys. Rev. B 95, 085120 (2017).

    ADS  Google Scholar 

  161. Ueda, K. et al. Magnetic-field induced multiple topological phases in pyrochlore iridates with Mott criticality. Nat. Commun. 8, 15515 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Savary, L., Moon, E. G. & Balents, L. New type of quantum criticality in the pyrochlore iridates. Phys. Rev. X 4, 041027 (2014).

    CAS  Google Scholar 

  163. Matsuhira, K. et al. Metal–insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln = Nd, Sm, and Eu). J. Phys. Soc. Jpn. 76, 043706 (2007).

    ADS  Google Scholar 

  164. Nakayama, M. et al. Slater to Mott crossover in the metal to insulator transition of Nd2Ir2O7. Phys. Rev. Lett. 117, 056403 (2016).

    ADS  CAS  PubMed  Google Scholar 

  165. Tian, Z. et al. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys. 12, 134–138 (2016).

    CAS  Google Scholar 

  166. Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    ADS  CAS  PubMed  Google Scholar 

  167. Yamaji, Y. & Imada, M. Metallic interface emerging at magnetic domain wall of antiferromagnetic insulator: fate of extinct Weyl electrons. Phys. Rev. X 4, 021035 (2014).

    CAS  Google Scholar 

  168. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, aaw5685 (2019).

    ADS  Google Scholar 

  169. Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  170. Song, Z.-D., Elcoro, L., Xu, Y.-F., Regnault, N. & Bernevig, B. A. Fragile phases as affine monoids: classification and material examples. Phys. Rev. X 10, 031001 (2020).

    CAS  Google Scholar 

  171. Song, Z.-D., Elcoro, L. & Bernevig, B. A. Twisted bulk-boundary correspondence of fragile topology. Science 367, 794–797 (2020).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  172. Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    CAS  Google Scholar 

  173. Vilanova Vidal, E., Stryganyuk, G., Schneider, H., Felser, C. & Jakob, G. Exploring Co2MnAl Heusler compound for anomalous Hall effect sensors. Appl. Phys. Lett. 99, 132509 (2011).

    ADS  Google Scholar 

  174. Wuttke, C. et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge. Phys. Rev. B 100, 085111 (2019).

    ADS  CAS  Google Scholar 

  175. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  CAS  PubMed  Google Scholar 

  176. Vergniory, M. G. et al. Graph theory data for topological quantum chemistry. Phys. Rev. E 96, 023310 (2017).

    ADS  CAS  PubMed  Google Scholar 

  177. Bradlyn, B., Wang, Z., Cano, J. & Bernevig, B. A. Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: an example on the triangular lattice. Phys. Rev. B 99, 045140 (2019).

    ADS  CAS  Google Scholar 

  178. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  179. Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    CAS  Google Scholar 

  180. Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95, 087206 (2005).

    ADS  CAS  PubMed  Google Scholar 

  181. Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 49, 1750–1776 (2016).

    CAS  Google Scholar 

  182. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019). This is the first proof of a ferromagnetic nodal line half metal with surface states that take the form of drumheads via ARPES in Co2MnGa.

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work from B.A.B. on magnetic topology is mainly supported by DOE grant no. DE-SC0016239. Further support comes from the Schmidt Fund for Innovative Research, Simons Investigator grant no. 404513, the Packard Foundation, the Gordon and Betty Moore Foundation through grant no. GBMF8685 towards the Princeton theory programme, the NSF-EAGER no. DMR 1643312, NSF-MRSEC nos DMR-1420541 and DMR2011750, ONR no. N00014-20-1-2303, BSF Israel US Foundation no. 2018226, and the Princeton Global Network Funds. C.F. was supported by the ERC Advanced grant no. 742068 ‘TOPMAT’ and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy through the Würzburg–Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter—ct.qmat (EXC 2147, project-id 390858490). H.B. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 678702), and the German–Israeli Foundation (GIF, I-1364-303.7/2016).

Author information

Authors and Affiliations

Authors

Contributions

B.A.B., C.F. and H.B. wrote the review.

Corresponding author

Correspondence to B. Andrei Bernevig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Shuang Jia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This Supplementary Information file contains Appendix A: Magnetic Group Theory and Magnetic Topology; Appendix B: Magnetic Topological Insulators: Correlated Chern Insulators in Moiré Systems; Appendix C: Semimetal Predictions; and additional references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernevig, B.A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022). https://doi.org/10.1038/s41586-021-04105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04105-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing