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A major goalin human genetics is to use natural variation to understand the
phenotypic consequences of altering each protein-coding gene in the genome. Here
we used exome sequencing' to explore protein altering variants and their
consequences in 454,787 UK Biobank study participants®. We identified 12 million
coding variants, including ~1 million loss-of-function and ~1.8 million deleterious
missense variants. When these were tested for association with 3,994 health-related
traits, we found 564 genes with trait associations at P<2.18x10™. Rare variant
associations were enriched in GWAS loci, but most (91%) were independent of
common variant signals. We discover several risk-increasing associations with traits
related toliver disease, eye disease and cancer, among others, as well as novel
risk-lowering associations for hypertension (SLC943R2), diabetes (MAP3K15,
FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging
phenotypes, including two involved in neural development (GBE1, PLDI). 81% of
signals available and powered for replication were confirmed in anindependent
cohort; furthermore, association signals were generally consistent across European,
Asianand African ancestry individuals. We illustrate the ability of exome sequencing
toidentify novel gene-trait associations, elucidate gene function, and pinpoint
effector genes underlying GWAS signals at scale.

A major goal in human genetics is to use natural variation to under-
stand the consequences of altering each protein-coding gene in the
genome. Towards that goal, the UK Biobank (UKB) Exome Sequenc-
ing Consortium' sequenced the exomes of 454,787 UKB participants
(Supplementary Table 1), with 95.8% of targeted bases covered at a
depth of 20X or greater, as previously described"’. We identified 12.3
million variants in 39 million base pairs across the coding regions of
18,893 genes (Table 1), of which 99.6% were rare variants (minor allele
frequency [MAF] <1% across all ancestries). This catalog exceeds by
about 1.3-fold the coding variation contained in the combined TOPMed*
and gnomAD?® datasets (9.5 million autosomal variants), and by about
8-fold the coding variation accessible in the UKB through imputation
(1.6 million autosomal variants with info score >0.3; Supplementary
Table 2). Among the variants identified were 3,457,173 (median of
10,273 per individual) synonymous, 7,878,586 (9,292 per individual)
missense and 915,289 (214 per individual) putative loss-of-function
(pLOF) variants (Table 1), of which about half were observed only once
inthis dataset (singleton variants; Supplementary Figure 1). About 23%
(1,789,828) of missense variants were predicted to be deleterious by five

predictionalgorithms (see Methods; henceforth ‘deleterious missense
variants’). This unique catalog of coding variation, combined with the
large sample size and thousands of available phenotypes, provides a
unique opportunity to assess gene function at unprecedented scale.

Association studies of rare variants

GWAS often do not elucidate gene function per se because (i) most
protein-coding variants are not accessible through imputation (Sup-
plementary Table 3); and (ii) it is not straightforward to identify the
specific genes and mechanisms underlying associations with common
non-coding variants®. Toillustrate the potential to elucidate gene func-
tion through analysis of WES data, we tested the association between
rare pLOF and deleterious missense variants and 3,994 health-related
traits measured in UKB study participants (Supplementary Data1).
Thisincluded 3,702 binary traits with at least 100 cases and 292 quan-
titative traits from a variety of domains, including anthropometry,
biochemistry and hematology (Supplementary Table 4). About half
of the binary traits were uncommon, with a population prevalence
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between 0.1% and 1% (Supplementary Figure 2). Association analy-
ses were performed using the whole-genome regression approach
implemented in REGENIE’, which accounts for relatedness, population
structure and polygenicity and uses afast, approximate Firth regression
approach for binary outcomes. Variants were tested individually and
on aggregate, through gene burden tests that group protein-altering
variants within each gene.

We first analyzed WES data from individuals of European ancestry
(N=430,998;-95% of the total sample size), focusing on pLOF (including
stop-gain, frameshift, stop-lost, start-lost and essential splice variants)
and deleterious missense variants with a MAF<1%. We tested for associa-
tionbetween each trait and individual variantsin 18,811 genes, as well as
with aggregations of variantsin each gene, considering either pLOF or
pLOF and deleterious missense variants jointly. Overall, we performed
atotal of ~2.3 billion association tests (Supplementary Table 5), with no
evidence for a substantial impact of population structure or unmod-
eled relatedness on the results (Supplementary Figures 3 and 4). We
found 8,865 significant associations - involving 564 genes, 492 traits
and 2,283 gene-trait pairs (Extended Data Figure 1) - at a P<2.18x10™,
which corresponds to aBonferronicorrection for multiple testing (i.e.
P<0.05/2.3 billion tests; at this threshold, <0.05 association signals
expected by chance across the full result set). As we show later, 8,059
(91%) of these associations could not be explained by linkage disequi-
librium (LD) with nearby common variants and, furthermore, 81% of
associations available and powered for replication were confirmedinan
independent but smaller cohort of N=133,370 individuals (DiscovEHR
cohort). All 8,865 associations are provided in Supplementary Data2,
aswellastwo non-redundant sets obtained by retaining only the most
significant signals: (i) per gene-trait pair (2,283 signals; filtered viewin
Supplementary Data 2); or (ii) per gene (564 signals; Supplementary
Table 6). Of the 564 lead gene associations, 415 were due to a burden
signal (which typically aggregated SNPs and indels) and 149 were due
toanindividual rare variant. Of these 149, 20 represented association
withanindel variantand 129 represented association with an SNV (Sup-
plementary Table 6). Gene targets of drugs approved by the Food and
Drug Administration were 3.6-fold more common among the associated
genes (36 of 564, or 6.4%; Supplementary Table 6) thanin the remaining
genes (345 0f 18,317, or 1.9%; Fisher’s exact test P<1.7x10°).

Thelarge number of associationsidentified provides a unique oppor-
tunity to understand the phenotypic consequences of protein-altering
variation in humans and identify novel therapeutic targets. As it is
not possible to exhaustively describe all novel gene associations, we
instead highlight examples selected from four broad groups of variants:
(i) singleton variants; (ii) risk lowering variants; (iii) variants with a
beneficial effect onaquantitative trait; and (iv) variants of likely somatic
origin. These groupingsillustrate the value of the UKB exome resource
and the potential of our datato power further discovery and analyses.

Associations with singleton variants

We first focused on 69 signals discovered when considering aburden
of singletonvariants, which represent the rarest class of variation and
remain well beyond the reach of genotyping arrays and imputation
using existing reference panels. Association of a phenotype with the
burden of singletons in a gene represents one of the most compelling
ways for human genetics toimplicate agenein disease®. Each of the 69
geneswas associated with an average of 5.7 (mostly correlated) traits,
resulting in a total of 393 associations (4.4% of the total; Supplemen-
tary Data 2). To our knowledge, 15 of these 69 gene associations have
not been previously described (Extended Data Table 1), of which we
highlight two. First, carriers of singleton pLOF variants in the chro-
matin remodeler EP400 had lower hand grip strength (96 carriers;
effect=-0.55SD units, 95% Cl1-0.68 to -0.42, P=8x107¢), consistent with
findings from knock-out mice, which also present peripheral neuropa-
thy and severe hypomyelination of the central nervous system’. Second,
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singleton pLOF variants in RRBP1, which encodes an ER-membrane
protein, were associated with lower apolipoprotein B levels (92 carriers;
effect=-0.83 SD units, 95% CI-1.0 to -0.64, P=3x10"%), as well as similar
reductions in LDL and total cholesterol levels. Consistent with this,
silencing of Rrbplin mice altered hepaticlipid homeostasis, resulting
in reduced VLDL biogenesis™.

Protective associations with disease outcomes

A major impetus to perform association analyses with rare variants
is the identification of genes for which loss-of-function variants are
associated with lower disease risk, as these may represent attractive
targets for blocking antibodies or other inhibitory modalities. How-
ever, power to identify protective associations with rare variants at
P<2.18x10™ was low (Extended Data Figure 2). Consistent with this, we
found only five genes associated with lower risk of disease outcomes
at P<2.18x10™, all previously reported: PCSK9, APOB, and APOC3 and
protection from hyperlipidemia; ABCG5 and cholelithiasis; /L33 and
allergic diseases (Supplementary Table 7).

Of note, however, an additional 11 protective associations were
observed atamore liberal significance threshold of P<107, including six
previously reported (involving ANGPTL3, IFIH1, DBH, PDE3B, SLC22A12
and ZNF229) and four that are potentially novel and remain highly asso-
ciated after accounting for common variant signals (Supplementary
Table 7). The first was between SLC9A3R2and lower risk of hypertension
(5,873 carriers; OR=0.81, 95% C1 0.76 to 0.87, P=2.2x10™°). SLC9A3R2
encodes NHERF-2, a kidney-expressed scaffolding protein that is
functionally linked to sodium absorptionviainteraction with sodium/
hydrogen exchanger 3™. A low-frequency missense variant in SLC9A3R2
(rs139491786, Argl71Trp, MAF=0.7%) was previously identified in a
GWAS of blood pressure®?, but the signal was attributed to anearby vari-
antin PKD1 (rs140869992, Arg2200Cys). We demonstrate thataburden
of rare pLOFs and deleterious missense variantsin SLC9A3R2, as well as
Argl71Trp, remain highly associated with systolic blood pressure (SBP),
diastolicblood pressure (DBP) and hypertension after conditioning on
Arg2200Cysin PKDI (Supplementary Table 8).In addition, we note that
there were strong associations when SBP (effect=-1.85 mmHg, 95% CI
-2.22t0-1.48, P=2.0x10™) and DBP (effect=-1.01 mmHg, 95% Cl-1.31to
-0.80, P=4.8x10"%; Supplementary Data 2) were analyzed as quantitative
traits, with the SBP association replicating in the DiscovEHR cohort
(P=2.6x10"*; Supplementary Table 6). Overall, the signal is consistent
with the well-established role of sodium balance in regulating blood
pressure and suggests that blocking SLC9A3R2 could provide an attrac-
tive means for managing blood pressure. Functional and clinical studies
that evaluate this possibility are warranted.

The second novel association was between lower risk of childhood
asthmaand aburden ofrare pLOFs and deleterious missense variantsin
SLC27A3(3,787 carriers; OR=0.65,95% C1 0.55t0 0.76, P=8.2x10°®), which
was supported by the following additional observations. First,aburden
ofrare pLOF and deleterious missense variants was also associated with
lower blood eosinophil counts (5,227 carriers; effect=-0.045SD units,
95% C1-0.070 to -0.020, P=4.4x10), a cell type with critical effector
functionsinallergic asthma. Second, there were consistent protective
associationsin the DiscovEHR cohort with both asthma (1,354 carriers;
OR=0.87,95% CI 0.75t01.01, P=0.060) and eosinophil counts (1,755
carriers; effect=-0.052 SD units, 95% CI -0.096 to -0.008, P=0.021).
SLC27A3encodesanacyl-CoA synthetase that activates long-chain fatty
acids®, is most highly expressed in artery, adipose and lung tissue™,
and is up-regulated in lung cancer®.

The third novel association was between a missense variant in PIEZO1
(rs61745086, Pro2510Leu, MAF=0.98%) and reduced risk of varicose
veins (7,454 carriers; OR=0.69, 95% C10.61t0 0.79, P=2.61x10®). PIEZO1
encodes amechanosensitive cation channel with a key role in venous
and lymphatic valve formation. We had previously shown that rare
pLOFsinthisgeneincrease the risk of asymptomatic varicose veins of



lower extremities by 4.9-fold (162 carriers; 95% CI 2.8 t0 8.6, P=3.2x10°®)
in the first SOK exomes from the UKB?, an association that is now esti-
mated at 2-fold with -8 times more data (1,355 carriers; OR=2.08, 95%
Cl1.62t0 2.67, P=7.4x10°). The new protective association with Pro-
2510Leu, which replicated in the DiscovEHR cohort (2,243 carriers;
OR=0.66,95% C10.47t00.93, P=0.017), suggests that this missense vari-
antlikely has a gain-of-function effect. Thisisimportant because it sug-
gests that activation of PIEZO1 may provide a therapeutic pathway for
acommon condition withno available pharmacological interventions.

Lastly, the fourth novel association was between MAP3K15 and
protection from type-2 diabetes, which is discussed in greater detail
below. Amongthese four novel protective associations, only two (with
SLC9AR2and PIEZO1) were observed at P<10” when analyzing TOPMed
imputed data (Supplementary Table 9 and 10).

Protective associations with quantitative traits

The low yield of protective associations with disease traits contrasts
withthat observed for disease-relevant quantitative traits, such asbody
mass index, which often provide greater power for genetic studies.
Specifically, we found 131 genes for which the direction of effect on
a quantitative trait was consistent with a beneficial effect on disease
risk (Supplementary Table 11). For example, we found low-frequency
protein-altering variants in ASGRI associated with lower apolipo-
protein B levels (759 carriers; effect=-0.29 SD units, 95% CI-0.35 to
-0.22, P=6.5x10"%). ASGR1 haploinsufficiency was previously reported
to reduce risk of cardiovascular disease”, an observation that sup-
ported clinical development of an anti-ASGR1 monoclonal antibody
asalipid-lowering therapeutic'®.

As another example, we found an association between lower
serum glucose levels and pLOF variants in FAM234A (2,439 carriers;
effect=-0.14 SD units, 95% CI-0.18 to -0.099, P=2.0x107%), which was
independent of associations with common variants (Supplementary
Table1land Supplementary Figure 5). There was a consistent associa-
tioninthe DiscovEHR cohort with fasting glucose levels (1,132 carriers;
effect=-0.046 SD units, 95% CI-0.099 to 0.007, P=0.09), albeit not statis-
tically significant. Of note,acommon intronic variantin FAM234Awas
previously reported to associate with lower risk of type-2 diabetes (T2D;
1s9940149:A, MAF=18%, OR=0.95) and to co-localize with aregulatory
variant that lowers FAM234A expression in multiple tissues”. Consist-
ent with this, we found that rare pLOFs in FAM234A were associated
with a36% reduction inrisk of self-reported diabetes (2,104 carriers;
OR=0.64, 95% C10.52 t0 0.80, P=10*). Collectively, results from both
rare and common variants implicate FAM234A, a gene of unknown
function, in the etiology of diabetes.

We then determined if there were other examples of genes with
both a favorable effect on a quantitative trait and a protective (even
if sub-threshold) association with a relevant disease, as observed for
FAM234A. To this end, for 131 quantitative trait association signals,
we estimated the genetic correlation (r,) between the trait and all
diseases tested, and then selected the disease with the most signifi-
cantr,. We only considered diseases for which the r, was significant
after correcting for multiple testing, if any. For example, eosinophil
count was matched to asthma (r,=0.37), while intra-ocular pressure
was matched to glaucoma (r,=0.66); in total, we found a matching
disease for 129 traits (Supplementary Table 12). Using this approach,
we foundthat 13 genes had a protective association with a genetically
correlated disease that was significant after correcting for multiple
testing (P<0.05/129 tests=3.8x10*; Extended Data Figure 3). Of these,
we highlight the association between aburden of protein-altering vari-
ants in MAP3K15 and both lower levels of hemoglobin Alc (7,551 carri-
ers; effect=-0.085SD units, 95% CI-0.100 to-0.073, P=7.8x10*°), lower
serum glucose (6,885 carriers; effect=-0.090 SD units, 95% CI-0.110 to
-0.073, P=1.7x10%) and protection from T2D (7,085 carriers; OR=0.85,
95% C10.79 to 0.91, P=2.8x10°®). Furthermore, there was supporting

evidence in the DiscovEHR cohort for all three phenotypes: hemo-
globin Alc (1,304 carriers; effect=-0.040 SD units, 95% CI-0.079 to
-0.002, P=0.038), glucose (1,754 carriers; effect=-0.097 SD units, 95%
CI-0.130t0-0.064, P=1.3x10®) and T2D (2,455 carriers; OR=0.91,95% CI
0.84t0 0.98, P=0.018). MAP3K15 encodes an ubiquitously expressed,
mitogen-activated protein kinase involved in apoptotic cell-death®,
not previously implicated in type-2 diabetes.

Associations with somatic mutations

Amongthe 492 traits with at least one significant rare variant associa-
tion, 20 were noteworthy because they involved two or more genes
with rare variant signals but no common variant signals from GWAS
(Extended Data Figure 4aand 4b). Remarkably, for 7 of these 20 traits
- myeloid leukemia (seven genes; Supplementary Figure 6), sepsis
(four genes) and five additional blood related traits — the majority of
associated genes were previously implicated in clonal hematopoie-
sis of indeterminate potential (CHIP?; Supplementary Table 13). The
associated variantsin these CHIP genes were strongly correlated with
age, and the proportion of reads supporting the variant in putative
heterozygotes was often <35% (Supplementary Table 14), consistent
with these associations being driven by somatic mutationsidentified
through exome sequencing of blood-derived DNA.

Associations in non-European ancestries

We next investigated the extent to which associations identified in
the European cohort were shared across other ancestries. To do so,
we performed association analyses using WES data for 10,348 indi-
viduals of South Asian (SAS), 9,089 of African (AFR) and 2,217 of East
Asian (EAS) ancestry from the UKB cohort. When we focused on the
564 non-redundant associations (i.e. strongest association per gene,
484 witha quantitative traitand 80 with abinary trait; Supplementary
Table 6), we found thatalarge fraction of associations was shared across
ancestries for quantitative traits butless so for binary traits, likely due
to low power. For quantitative traits, effect sizes were directionally
concordant for 83% of associations inindividuals of SAS, 73% of AFR and
74% of EAS ancestry, increasing to >92% when considering associations
with a P<0.05 (Extended Data Figure 5a). For binary traits, consistent
effects were observed for 61% of associations in SAS, 61% in AFR and
64%in EAS (Extended Data Figure 5b). A similar pattern was observed
when considering the full set of 8,865 associations (Supplementary
Figure 7). We then asked if any new associations were discovered in
non-Europeanancestries (Supplementary Data 3); we found four genes
not discovered in the European-only analysis (G6PD, HBQI, OR51V1,
RGS11), all explained by previous established associations (Supple-
mentary Table 15).

Replication of rare variant associations

We sought toreplicate associations using exome sequencing data from
the Geisinger DiscovEHR cohort*(N=133,370 individuals of European
ancestry). As above, to facilitate interpretation of results, we focused
onthenon-redundantset of 564 gene-trait associations discovered in
UKB Europeans (Supplementary Table 6) and determined if amatching
trait could be identified in DiscovEHR. Of the 279 gene-trait associations
for which we attempted replication, 193 (69%; 28 with a binary trait,
165 with a quantitative trait) were nominally significant (P<0.05) and
directionally consistent (Supplementary Table 6), versus -7 expected
by chance (279 x 0.05 x 0.5). When considering only a subset of 212
gene-trait associations with at least 80% power for replication, the
replication rate was 81% (172 of 212). Supplementary Data 2 provides
replication results for all associations available in DiscovEHR (4,083
of 8,865), of which 70% were nominally significant and directionally
consistent.
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Impact of burden test composition

Asnoted above, association of a phenotype with the burden of rare cod-
ing variantsin ageneis a compelling way for human genetics to connect
genesand disease®. As we show in the Supplementary Note, when we dis-
sected burden associationsingreater detail, we found that: (i) most (77%
of7,449) associations could not be detected in single-variant analyses
(Supplementary Data 2), demonstrating that they were generally sup-
ported by multiple variants; (ii) burden tests that aggregated variants
with a MAF up to 1% identified a larger number of significant associa-
tions overall (Supplementary Table 16), but most of these remained
significant after excluding variants with a MAF between 0.1% and 1%
(Extended Data Figure 6a), indicating that the greater yield is likely
explained by the ability to capture in a single test association signals
across a wide range of allele frequencies; and (iii) combining pLOFs
and deleterious missense variants in the same test became progres-
sively more valuable at more permissive MAF thresholds (Extended
Data Figure 6b). These results demonstrate the utility of performing
avariety of burden tests for discovery of genetic associations.

Enrichment of associations in GWAS loci

A major challenge for genetic association studies of complex traits is
theidentification of effector genes for the thousands of lociidentified
through GWAS®. To address the possibility that rare variant associa-
tions might help pinpoint effector genes, we performed a GWAS for
each of the 492 traits with a rare variant association (see Methods,
Supplementary Dataland Supplementary Figure 4), identifying a total
0f107,276 independent associations with common variants (hereafter
“GWAS sentinel variants”). As described in greater detail in the Supple-
mentary Note, by combining results from the GWAS and the WES data,
we found that: (i) rare variant associations were often within 1IMb of a
GWAS sentinel variant for the same trait (6,564 of 8,865, 74%; Extended
DataFigure 4a); (ii) most rare variant associations (8,059 of 8,865, 91%)
remained significant at P<2.18x10™ when we conditioned on GWAS
common variant signals (Extended Data Figure 4c, Supplementary
Table 17 and Supplementary Data 2); (iii) significant rare variant associa-
tions (after conditioning on GWAS signals) were 11.4-fold (95% CI10.1
t013.0, P<10%°°) more common in genes located within1Mb of a GWAS
peak, with enrichment reaching 59.4-fold (95% C151.8 to 68.2) when we
focused only on genes nearest to GWAS sentinel variants (Figure 1).
These results show strong overlap between common variant signals
from GWAS and rare variant signals from exome-wide association stud-
ies, suggesting that rare variant burden signals will identify effector
genes for thousands of GWAS loci.

Likely effector genes of GWAS signals

Toillustrate the relevance of the findings described above, we high-
light 168 genes where a significant RV association (P<2.18x10™ after
conditioning on common variants) was observed in the gene nearest
to the GWAS sentinel variant (Supplementary Table 18), indicating
that these are very likely effector genes underlying the GWAS signal.
As anexample, we found 82 GWAS signals for serum levels of vitamin
D (Extended Data Figure 7a), and for five of these the burden of rare
protein-altering variants in the gene nearest the GWAS peak (DHCR?7,
FLG, GC, ANGPTL3 and HAL) was also associated with vitamin D levels
(Extended Data Figure 7b). Of these, we highlight the association with
HAL,whichhas notbeen previously reported. The first step of vitamin
D synthesis occurs in the skin and requires ultraviolet (UV) light. HAL
is likely to play a role in this step because it encodes an enzyme that
converts histidine into trans-urocanic acid, a major UV-absorbing
chromophore that accumulates in the stratum corneum??, Inac-
tivation of HAL is therefore expected to decrease the ability of the
outermost layer of the epidermis to block UV light. Consistent with
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this possibility, we found that a burden of rare pLOF and deleterious
missense variants in HAL was associated with higher vitamin D levels,
greater ease of skin tanning and higher risks of actinic keratosis and
non-melanomaskin cancer (Supplementary Table19). These findings
were supported by trait-lowering associations witha common variant
(rs10859995:C, 58% frequency) that co-localizes (LD r’=0.97) with an
expression quantitative trait locus (rs3819817:T) that increases HAL
expression in skin tissue™ (Extended Data Figure 7c). These results
implicate HAL in both vitamin D levels and skin cancer and highlight
an allelic series that includes rare loss-of-function protein-altering
variants (trait-increasing) as well as common expression-increasing
non-coding variants (trait-lowering).

Associations with brainimaging traits

The brain imaging component of UKB currently includes 2,077 phe-
notypes derived from magnetic resonance imaging (MRI) for 36,968
individuals. We analyzed these data separately given the large number
of traits and the relatively smaller samplesize, testing the association
with rare variants conditional upon GWAS signals as described above.
We found 84 associations at P<2.18x10™ with six genes (Supplementary
Table 20): AMPD3, GBE1, PLD1, PLEKHG3, STABI and TF. Of these, we
highlight the association between lower grey/white matter contrast
(GWC) measures across a diffuse set of brain regions and a deleteri-
ous missense variant in PLDI (rs149535568, Gly237Cys, 196 carriers;
effect=-0.49 SD units, 95% C1-0.62 to -0.35, P=1.4x10™?), an enzyme
that catalyzes the hydrolysis of phosphatidylcholine to phosphatidic
acid and choline, which has been shown to play a role in synaptogen-
esis®*. GWC is a measure of blurring between the boundaries of grey/
white matter brain compartments and is thought to be anindicator of
localvariationsin tissue integrity and myelin degradation, increasing
water content in the white matter, or iron deposition®. Lower GWC
is associated with aging and lower indices of cognition?, as well as
anincreased rate of conversion from mild cognitive impairment to
dementia?. Related to this finding, among an additional 46 genes with
sub-threshold associations with brain imaging phenotypes (P<107;
Supplementary Table 21), four genes had large trait-lowering effects
on GWC, including two that have clear rolesin the formation and main-
tenance of myelin - G/C2% and UGTS” - consistent with the association
between variants that disrupt the function of these genes and lower
GWLC.In contrast, the strongest trait-increasing and putatively protec-
tive association with GWC was with a deleterious missense variant in
ST6GALNACS (rs756654226, Val135Ala, 9 carriers; effect=1.7 SD units,
95% Cl1.1to0 2.4, P=8.2x10®), a gene that catalyzes the biosynthesis of
ganglioside GDlalpha from GM1bin the brain®. This aligns with current
evidence that the relative abundance of specific gangliosides in the
brain changes with age and in common neurological conditions®. We
discuss notable associations with other genes (GBE1, PLEKHG3, STAB1
and TF) inthe Supplementary Note.

Beyond 500,000 exomes

Inour evaluation of the first 49,960 exomes sequenced from UKB par-
ticipants®, we used a beta-binomial model to predict the number of
genes that would harbor heterozygous pLOF variants when consider-
ing exome data for all 500,000 study participants. At current sample
sizes, the observed and predicted numbers match closely (e.g. 15,289
observedvs. 15,613 predicted genes with atleast 50 heterozygous pLOF
carriers; Supplementary Table 22). Using our current dataset as abase-
line (including all ancestries), we extended our projections to estimate
the number of genes harboring rare pLOFs (MAF<1%) when exome
sequence databecome available for five millionindividuals: we predict
that 18,035, 17,853 and 8,376 genes will have at least 50,100, and 500
heterozygous pLOF carriers, respectively (Supplementary Table 22
and Extended Data Figure 8a). Similarly, we predict that 2,630,997 and



529 genes will have atleast10, 50 and 100 homozygous pLOF carriers,
respectively, when considering five million sequenced individuals.

The UKB cohort consists primarily of individuals of European ances-
try, and so an important question is whether these projections also
apply to populations that are more ancestrally diverse. To address
this, we predicted the number of pLOF carriers expected in five mil-
lion individuals based on (i) 46K individuals of European ancestry
from the UKB; and (ii) 46K individuals from the UKB, including 23K of
European ancestry and all 23K individuals of non-European ancestry
(10K of South Asian, 9K of African, 2K of East Asian ancestry and 2K
of admixed ancestry). We found that projections based on the more
diverse set of samples were slightly higher than the estimates from
the European-only dataset (Extended Data Figure 8b).

Whole-genome sequencing and imputation

In the coming years, we expect whole-genome sequence data to be
available for all UKB participants, enabling analyses of rare variation to
be extended to the remainder of the genome. Our dataenables anearly
assessment of the value of that upcoming resource for genotype impu-
tation, awidely used strategy for increasing the power, completeness
and interpretability of array-based association studies®2. We phased
exome variants onto genotyping array haplotypes for 400,000 indi-
viduals, and then used this reference panel to impute exome variants
intoanarray-only target dataset of 50,000 individuals. When reference
and target datasets were well matched in ancestry, imputationaccuracy
remained high (r°>0.5) for alleles present in at least 5 reference-panel
haplotypes, enablingimputationdownto allele frequency of ~0.025%,
~0.005% and ~0.0005% in panels with ~10,000, ~50,000 or ~400,000
sequenced individuals (Supplementary Table 23 and Figure 2). As
expected, imputation accuracy was lower, but still very good, when
reference panel and target samples were less well matched in ancestry
(Supplementary Table 23). Using reference panels of different sizes,
we observed rapidincreases in the ability toimpute rare variants with
larger panels and thus expect that even rarer variants will be imput-
able asreference panel sizes grow to 400,000 individuals and beyond
(Extended Data Figure 9 and Supplementary Figure 9).

Discussion

We report the completion of exome sequencing for 454,787 UKB par-
ticipants. Our dataset now includes an average of >600 coding variants
per gene (including ~50 pLOFs per gene on average). In addition to
enabling studies of mutation patterns and human demography®, our
dataset represents amajor advance towards the goal of understanding
the health consequences of modifying each gene inthe genome. In our
preliminary analyses, we identify associations with health outcomes
for pLOF and likely deleterious variation in 564 genes. These findings
suggest new biological functions for many genes and potential thera-
peuticstrategies, whether through enzyme replacement, therapeutic
blockade or other modalities. Allthe data we generated are being made
available to the UKB scientificcommunity - and their combined creativ-
ity and efforts will surely expand on these initial analyses.

The following caveats (expanded in the Supplementary Discussion)
should be considered when interpreting our results. First, asmall num-
ber of potentially low-quality variants may be included in the analysis,
butour stringent significant thresholds and demonstrated replicability
of mostresults suggest thatis not awidespread phenomenon. Second,
disentangling mechanismin genes associated with multiple traits will
require careful follow-up analyses to distinguish situations where a
gene affects multiple traits directly from those where additional signals
are shadows of association with one trait. Third, while we focused on
burden tests that could identify genes were all pLOF or deleterious
missense variants have a similar effect direction, additional association
signals may be identified in genes that harbor both trait-increasing

and trait-lowering rare variants using alternative approaches such as
SKAT**.Inaddition to these limitations, there are additional challenges
that must be addressed with new samples and data: (i) there is limited
genetic diversity among UKB participants and we expect that additional
insights willbecome possible as more diverse samples are sequenced,
particularly including insights that are relevant to the genetic disease
burden specific to non-Europeans; (ii) although self-report question-
naires and electronic health records provide a very scalable way to
phenotype 100,000s of individuals, they naturally entail some mis-
classification - particularly when compared to more laborious and
targeted phenotyping protocols; and (iii) given very limited availability
of complete nuclear families, it is not practical to carry out focused
analyses of de novo variation which has been shown to be especially
important for several neurodevelopmental traits.

Accomplishing our original goal of understanding the health con-
sequences of genetic variation in each human gene will likely require
sequencing millions of well characterized and diverse individuals. In our
view, our results not only show this goal is withinreach but also suggest
that sequencing five million individuals would enable the identifica-
tion of 500+ heterozygous LOF carriers for -15,000 genes - that s, for
the great majority of human protein-coding genes. It is our hope that
these results and dataset will help provide the impetus and urgency
for generating these new datasets which combine health and variation
data on millions of individuals.
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Table 1| Number of coding variants discovered in exome
sequencing data from 454,787 participants of the UK

Biobank

Variant category

N variants (% with
MAC=1)

Median number
of variants per
participant (IQR)

Coding regions? 12,326,144 (46.86) 19,895 (247)
Predicted function

In-frame indels 75,096 (40.33) 115 (11)
Synonymous 3,457173 (43.12) 10,273 (141)
Missense 7,878,586 (47.28) 9,292 (143)
Likely benign 1,532,129 (44.11) 6,561(104)
Possibly deleterious 4,556,629 (47.23) 2,610 (70)
Likely deleterious 1,789,828 (50.1) 121(16)
pLOF (any transcript) 915,289 (57.88) 214 (16)
Start lost 26,453 (47.94) 13 (4)

Stop gain 279,913 (54.02) 52(8)

Stop lost 12,843 (56.51) 6(3)
Splice donor 104,328 (58.67) 17 (5)
Frameshift 405,669 (60.41) 90 (10)
Splice acceptor 86,083 (60.79) 20 (5)

2 Includes all coding variants: synonymous, in-frame indels, missense and pLOF variants.
Abbreviations: pLOF - putative loss-of-function. MAC - minor allele count. IQR - inter quartile

range.
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Methods

Exome sequencing

Sample preparation and sequencing. We have previously described
in detail the approach used at the Regeneron Genetics Center to per-
form exome sequencing in DNA samples from the UK Biobank study?.
Briefly, genomic DNA samples were transferred to the Regeneron Ge-
netics Center from the UK Biobank and stored inan automated sample
biobankat-80 °C prior to sample preparation. DNA libraries were then
created by enzymatically shearing DNA to amean fragment size of 200
base pairs, and acommon Y-shaped adapter was ligated to all DNA
libraries. Unique, asymmetric 10 base pair barcodes were added to the
DNA fragment during library amplification to facilitate multiplexed
exome capture and sequencing. Equal amounts of sample were pooled
prior to overnight exome capture, with a slightly modified version of
IDT’s xGen probe library. The initial 50,000 samples were processed
with IDT “lot1” and all other samples with “lot 2”. The captured DNA was
PCR amplified and quantified by qPCR. The multiplexed samples were
pooled and then sequenced using 75 base pair paired-end reads with
two 10 base pair index reads on the lllumina NovaSeq 6000 platform
using S2 (first 50,000 samples) or S4 (all other samples) flow cells.

Variant calling and quality control. Sample read mapping and vari-
ant calling, aggregation and quality control were performed via the
SPB protocol described in Van Hout et al’. Briefly, for each sample,
NovaSeq WES reads are mapped with BWA MEM to the hg38 reference
genome. Small variants are identified with WeCall and reported as
per-sample gVCFs. These gVCFs are aggregated with GLnexus into a
joint-genotyped, multi-sample VCF (pVCF). SNV genotypes with read
depth (DP) lessthanseven and indel genotypes withread depthless than
ten are changed to no-call genotypes. After the application of the DP
genotypefilter, avariant-level allele balance filter is applied, retaining
only variants that meet either of the following criteria: (i) at least one
homozygous variant carrier or (ii) at least one heterozygous variant
carrier with an allele balance (AB) greater than the cutoff (AB >=0.15
for SNVs and AB >= 0.20 for indels). Samples showing disagreement
between genetically-determined and reported sex (n=279), high rates of
heterozygosity/contamination (VBID > 5%) (n=287), low sequence cov-
erage (lessthan 80% of targeted bases achieving 20X coverage) (n=2), or
genetically-identified sample duplicates (n=721total samples), and WES
variants discordant with genotyping chip (n=449) were excluded. 633
samples failed quality control in multiple categories, resulting in1,105
individuals being excluded. An additional 16 samples were removed for
patients that withdrew from the study. The remaining 454,787 samples
were then used to compile a project-level VCF (PVCF) for downstream
analysis, using the GLnexus joint genotyping tool.

Ancestry assignment. We used array datareleased by the UK Biobank
study to determine continental ancestral super-groups (African [AFR],
Admixed American [AMR], East Asian [EAS], European [EUR] and South
Asian [SAS]) by projecting each sample onto reference principal com-
ponents calculated from the HapMap3 reference panel. Briefly, we
merged our samples with HapMap3 samples and kept only SNPs in
common between the two datasets. We further excluded SNPs with
MAF<10%, genotype missingness >5% or Hardy-Weinberg Equilib-
rium test p-value <10, We calculated PCs for the HapMap3 samples
and projected each of our samples onto those PCs. To assign a con-
tinental ancestry group to each non-HapMap3 sample, we trained
a kernel density estimator (KDE) using the HapMap3 PCs and used
the KDEs to calculate the likelihood of a given sample belonging to
each of the five continental ancestry groups. When the likelihood
for agiven ancestry group was >0.3, the sample was assigned to that
ancestry group. When two ancestry groups had alikelihood >0.3, we
arbitrarily assigned AFR over EUR, AMR over EUR, AMR over EAS, SAS
over EUR, and AMR over AFR. Samples were excluded from analysis

if no ancestry likelihoods were >0.3, or if more than three ancestry
likelihoods were > 0.3 (n=1,205).

Generation of analysis-ready files. The following steps were then
takento generate ananalysis-ready Plink2 fileset. First, we splitexome
data sample-wise into ancestral groups, defined as described above.
Second, within ancestral groups, we excluded variants with: (i) missing-
ness rate >0.1; (ii) Hardy-Weinberg equilibrium test p-value <10™; or
(iii) monomorphic. We also excluded samples with missingness rate
>0.1. After applying these filters, we generated ancestry-specific files
in Plink2 PGEN format which were then used for association analyses.

Identification of low-quality variants from exome-sequencing us-
ing machine learning. Briefly, we defined a set of positive control
and negative control variants based on: (i) concordance in genotype
calls between array and exome sequencing data; (ii) Mendelian in-
consistencies in the exome sequencing data; (iii) differences in allele
frequencies between exome sequencingbatches; (iv) variant loadings
on 20 principal components derived from the analysis of variants with
aMAF<1%; (v) transmitted singletons. The model was then trained on
up to 30 available WeCall/GLnexus site quality metrics, including, for
example, allele balance and depth of coverage. We split the datainto
training (80%) and test (20%) sets. We performed a grid search with
5-fold cross-validation on the training set to identify the hyperparam-
eters that return the highest accuracy during cross-validation, which
are then applied to the test set to confirm accuracy. This approach
identified aslow-quality atotal of 447,533 coding variants (3.7% of the
12 million total coding variants). These variants were flagged in (not
removed from) downstream analyses.

Variant annotation

Variants from WES were annotated as previously described®. Briefly,
variants were annotated using SnpEff, with the most severe conse-
quence for each variant chosen across all protein coding transcripts.
Gene regions were defined using Ensembl Release 85. Variants anno-
tated as stop gained, startlost, splice donor, splice acceptor, stop lost or
frameshift, for which the allele of interestis not the ancestral allele, are
considered predicted LOF variants. Five annotation resources were uti-
lized to assign deleteriousness to missense variants: SIFT*; PolyPhen2
HDIV and PolyPhen2 HVAR?; LRT¥; and MutationTaster®. Missense
variants were considered “likely deleterious” if predicted deleterious
by all five algorithms, “possibly deleterious” if predicted deleterious
by atleast one algorithm, and “likely benign” if not predicted deleteri-
ous by any algorithm.

Generation of gene burden masks

We aggregated rare variants for gene burden testing as previously
described®. Briefly, rare variants were collapsed by gene region, such
that individuals who are homozygous reference for all variants are
considered homozygous reference, heterozygous carriers of any
aggregated variant are considered heterozygous, and only minor allele
homozygotes for anaggregated variant are considered as minor allele
homozygotes. Genotypes were not phased to consider compound
heterozygotes in burden testing. For each gene, we considered two
categories of masks: astrict burden of rare pLOFs (M1) and amore per-
missive burden of rare pLOFs and likely deleterious missense variants
(M3). Four each of these groups, we considered five separate burden
masks per gene, based on the frequency of the alternative allele of the
variants that were screened in that group: MAF <1%, MAF < 0.1%, MAF
<0.01%, MAF < 0.001%, and singletons only. Thus, overall, up to ten
burdentests were performed for each gene (although for some genes,
the rarer burden tests may not have had enough (five) carriers across
all samples, in which case the test was not performed). For the pur-
poses of gene burden testing, the singleton mask includes minor allele
homozygotes if no other variant carriers are observed in the dataset.



Comparison with other large-scale resources

We compared variant statistics from UKB WES to two large, publicly
available resources - gnomAD?® v3.1 and TOPMed* Freeze 8. For both
studies, werestricted to “PASS” variants only, and annotated each data-
set as described for UKB WES data. The comparison across datasets
was restricted to synonymous, missense and pLOF variants only. We
considered data from all ancestries.

Imputation of unmeasured genotypes using the TOPMed
reference panel

We used the following approach to generate imputed genotype data
inthe UKB study for variants discovered by the TOPMed consortium®.
First, we began with the list of array variants previously used by UKB
to perform HRC imputation. We removed all array variants that could
not be successfully lifted over to GRCh38, leaving 655,665 variants.
Second, we splitthe array dataincluding 488,374 samplesinto twenty
evenly sized, randomized batches for submission to the TOPMed impu-
tation server. Third, we merged and concatenated the resulting VCF
files from the imputation server into one dataset containing nearly
308 millionimputed variants. We prepared this dataset for analysis by
first splitting into batches of ancestry by continental super-groups, as
previously described. We then filtered to variants that were predicted
as functional, had a MAF value > 0.0001 in the original TOPMed data-
set, or passed the filters of MAF > 0.0001 and INFO > 0.1 within the
dataset itself.

Health- and behavior-related phenotypes

Quantitative measures, clinical outcomes, survey and touch-screen
responses, and imaging derived phenotypes were extracted from
phenotypes available through the UK Biobank Data Showcase on
April 1,2020. Phenotype definition of ICD10-based cases required
one or more of the following: a) > 1 diagnosis in inpatient Health
Episode Statistics (HES) records, b) a cause-of-death diagnosis
in death registry, c) > 2 diagnoses in outpatient data (READ codes
mapped to ICD10). ICD10-based excludes had 1 outpatient encoun-
ter; controls were defined as those individuals that were not cases
or excluded. In total, data for 4,465 field IDs were downloaded from
UKB repository. We focused primarily on biomarkers, anthropometry
and disease outcomes. As such, we excluded from analysis (i) most
food and drink-intake questions (except for coffee, tea, and alcohol
intake); (ii) QC metrics (e.g. volume or sample dilutioninformation);
(iii) geographic and environmental questions (e.g. proximity to
coast, pollution index); (iv) most measures pertaining to lifestyle or
socio-economic status (e.g. number of cars owned, total household
income); and (v) OPCS traits and any binary traits with fewer than
100 affected individuals. Furthermore, to reduce redundancy among
binary traits, we excluded all “No” responses from analysis (e.g. we
analyzed “22127_DD_asthma_1_Yes”butnot“22127_DD_asthma_0_No).
In addition to HES and self-report data, we also generated custom
phenotype definitions for a select number of diseases of interest,
resulting in a total of 3,706 binary traits included in the study. For
the assessment of quantitative traits, we calculated the mean value
acrossallvisits,and excluded from analyses any single-visit data. Only
quantitative traits with datafor>50,000 individuals, other than brain
imaging phenotypes, were included in the analyses. We applied the
following additional filters to systematically flag and exclude from
analysis traits that were unlikely to be truly quantitative: (i) the mode
forthe trait was observed in >20% of samples (85 traits); (ii) the mode
for the trait was observed in 0.5% - 20% samples, but the number of
unique values was relatively small (<100; 58 traits); or (iii) the mode
for the trait was observed in 0.5% - 20% samples, but the number of
unique values was very large (>10,000; 9 traits), suggestive of a data
error. Theremaining 292 traits that passed QC were normalized using
arank-based inverse-normal transformation.

Brainimaging phenotypes

We analyzed 2,158 phenotypes obtained by structural magnetic reso-
nance imaging (MRI), diffusion MRI and task fMRI, downloaded from
the UK Biobank Data Showcase on April1,2020. The traits were quantile
normalized and a matrix of confounds including age, sex, age-by-sex,
head motion, head volume, head position, temporal imaging effects,
imaging center and genetic PCs was regressed out of each trait before
analysis, as described previously*°.

Genetic association analyses
Association analyses were performed using the genome-wide regres-
sion testimplemented in REGENIE’, separately for data derived from
exome-sequencing and TOPMed imputation. We included in step1of
REGENIE (i.e. prediction of individual trait values based on the genetic
data) array variants with a minor allele frequency (MAF) >1%, <10%
missingness, Hardy-Weinberg equilibrium test P-value>10™ and link-
age disequilibrium (LD) pruning (1000 variant windows, 100 variant
sliding windows and r’<0.9). We excluded from step 1 any SNPs with
high inter-chromosomal LD, in the major histocompatibility (MHC)
region, orinregions of low complexity. Of the 454,787 individuals with
exome sequencing data, 413 did not have array data after QC, and so
these individuals were excluded from association analyses. For each
trait, the leave-one-chromosome-out predictors obtained with step 1
were thenincluded as covariatesin step 2 for both the exome sequenc-
ingand TOPMed imputed data. The association model used in step 2 of
REGENIE also included as covariates (i) age, age?, sex, and age-by-sex;
(ii) 10 ancestry-informative principal components (PCs) derived from
the analysis of a set of LD-pruned (50 variant windows, 5 variantsliding
windows and r’<0.5) common variants from the array data generated
separately for each ancestry; and (iii) for the analysis of exome data,
we additionally included anindicator for exome sequencing batch (six
IDT batches) and 20 PCs derived from the analysis of exome variants
with aMAF between 2.6x10” (roughly corresponding toaminor allele
count[MAC]of 20) and 1% also generated separately for each ancestry.
We corrected for PCs built from rare variants because previous studies
demonstrated PCs derived from common variants do not adequately
correct for fine-scale population structure**2, We tested associations
withgenes onchromosome XbutnotY. For the non-pseudo autosomal
regions of chromosome X, we used a dosage compensation model, with
homozygousreference males coded 0, and hemizygous males coded 2.
Association analyses were performed separately for different conti-
nental ancestries defined based on the array data, as described above,
analyzing variants withaminor allele count of five or greater. Analysis
of TOPMed imputed data was only performed for 492 traits that had
atleast one significant rare variant association in the exome sequenc-
ing data.

Estimating power to identify risk-lowering and risk-increasing
associations

Empirical power calculations. We simulate genotype and phenotype
datawithout population structure/relatedness, using the same sample
sizeavailable forindividuals of European ancestry (N=430,998). Mark-
ers are simulated independently with alleles drawn from Binomial(2,
EAF)based onagiven effect allele frequency (EAF) level. We use alogistic
model to generate the binary trait:

logit(p) =+ GB

where pischosento achieve adesired prevalence level K, Gis the gen-
otype vector for the causal marker and = log(OR)is the effect of the
causal marker, and the traitis generated as Y|p - Bernoulli(p). We vary
the EAFbetween1%, 0.1%,0.01% and 0.001%, and for each setting gen-
erate 10 marker replicates. To simulate a binary trait, we consider the
disease prevalence Kat10%,1%, or 0.1% and vary the OR between 1, 0.75,
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0.5,0.35,0.2and 0.01 for risk-lowering (protective) variantsand 1, 1.5,
2,5,10, 20, 30, 40 and 50 for risk-increasing (predisposing) variants.
For each simulation setting with 10 marker replicates, we generate 100
phenotypicreplicates whichresultsin1,000 replicates, and we perform
association testing using REGENIE-FIRTH where the p-value fallback
threshold for Firth correctionis set to 0.05. Empirical power was then
estimated as the proportion of 1,000 simulation replicates with a
p-value below asignificance level a 0f 2.18x10™,

Theoretical power. For comparison, we computed theoretical power
based on a logistic regression score test as previously described®,
where the non-centrality parameter nis

_ 2NN (p'-p)’?
= N+ N) p(- )

where N, and N, represent the number of cases and controls, respec-
tively, pisthe EAFin controls (approximated by the EAFin the popula-
tion), p’is the EAFin cases, and pis the EAFin the study (taken as a
weighted average of the EAF in cases and controls).

Leveraging associations with quantitative traits to identify
protective associations with relevant diseases

We tested the association between rare variants and 292 quantitative
traits, and then leveraged associations with these traits to identify
protective associations with relevant diseases. The following four steps
were taken to do this. First, for each quantitative trait, we determined
if higher or lower trait levels are associated with a beneficial effect on
health. For example, higher bone mineral density is generally accepted
tobeassociated with lower risks of osteoporosis and fractures and, simi-
larly, lower eosinophil counts are associated with lower risks of asthma
and atopic dermatitis. Of the 292 quantitative traits tested, for 85 there
was consensus among a team of expertsin diverse therapeutic areason
the directionality that is associated with beneficial health outcomes.

Second, among all rare variant associations with each of those 85
traits, we identified the subset for which the direction of effect on
the trait was beneficial. For example, we identified rare variants that
increased (not reduced) bone mineral density, and rare variants that
reduced (not increased) eosinophil counts. We found 34 such traits
with at least one directionally favorable rare variant association.

Third, we matched each of these 34 quantitative traits to a single
relevant disease. We did this by estimating the genetic correlation
betweeneach trait and 357 disease outcomes (specifically, 3-digit ICD
codes, expert-curated definitions, self-report and doctor-diagnosed
diseases; we only considered diseases that had at least one rare vari-
antassociation at P<107), using LD score regression** and association
results from the TOPMed-based GWAS described above. We used LD
scores calculated for HapMap3 variants in individuals of European
ancestry fromthe 1000 Genomes Project, with variant positions lifted
over to genome build GRCh38. For each trait, we then identified any
genetic correlations that were significant after correcting for the 357
tests performed (P<0.05/357=1.4x10*) and then, if any, selected the
disease that had the most significant genetic correlation for follow-up
analysis. In this way, we were able to match 33 of the 34 quantitative
traitsto arelevant disease.

Lastly, for each gene with a significant (P<2.18x10™) and direction-
ally favorable effect on one of these 33 quantitative traits (for example,
IL33 pLOFs and association with lower eosinophil counts), we then
determined if there was a consistent protective association with the
matched disease (for example, /L33 pLOFs and protection from asthma).

Determining if associations were likely attributable to somatic
mutations

We found a small number of traits with (i) two or more genes with a
rare variant association; and (ii) no GWAS common variant signals.

For asubset of these traits, we noticed that the associated genes have
been implicated in clonal hematopoiesis of indeterminate potential
(CHIP)?*, Therefore, we addressed the possibility that the observed
associations with this small group of traits were explained by somatic
mutationsidentified through exome sequencing of blood-derived DNA.
To address this possibility, we (i) estimated the association between
eachvariant (or burdentest) and age, because the frequency of somatic
(but not germline) mutations typically increases strongly with age; and
(ii) counted the number of variant carriers for whom the proportion
of sequencing reads supporting the presence of the alternative allele
(i.e. variant allele fraction) was <35% or >65%, which would be more
consistent with the variant being of somatic than of germline origin.

Replicationin the DiscovEHR cohort

The Geisinger Health System (GHS) DiscovEHR cohort has been
described previously?. Briefly, DiscovEHR is a health system-based
cohort from central and eastern Pennsylvania (USA) with ongoing
recruitment since 2006. A subset of 133,370 MyCode participants
sequenced as part of the GHS-Regeneron Genetics Center DiscovEHR
partnership and confirmed to be of European ancestry were included
inthis study. We attempted toreplicate in DiscovEHR the most signifi-
cantvariant-traitassociation for each gene, as listed in Supplementary
Table 6. We only considered associations for which the trait tested in
the UKB cohort could be matched unambiguously to atraitavailablein
the DiscovEHR cohort. To determineif the DiscovEHR cohort provided
adequate powerto replicate an association discovered in the UKB, we
carried outawinner’s curse-corrected power analysis as described pre-
viously*°. Briefly, power to replicate a given trait-variant associationin
the DiscovEHR cohortata P<0.05 was estimated based on the following
parameters: (i) effect size in the UKB cohort (beta), after adjusting for
winner’s curse; (ii) standard error of the effect size in the DiscovEHR
cohort; and (iii) sample size in DiscovEHR cohort. The same approach
was used for quantitative and binary traits.

Identification of rare variant associations that were
independent of GWAS signals

For each of the 492 traits with at least one rare variant association at
P<2.18x10™, we (i) identified common variants independently asso-
ciated with the trait at P<107; and (ii) determined if the rare variant
associations remained significant after adjusting for the common
variant signals.

To identify common variants independently associated with a given
trait, we first performed a GWAS for that trait that included the same
individuals used in the analysis of exome-sequencing dataand common
variants (MAF>1%) imputed from TOPMed, as described above. We then
identified independent signals (in the autosomes and the X chromo-
some) using the approximate conditional analysisimplementedin GCTA
version1.91.7*. To estimate linkage disequilibrium, we randomly sampled
10,000 individuals from the UK Biobank TOPMed imputed dataset, with
dosages between 0 and 0.1 considered homozygote for the reference
allele (genotype = 0), between 0.9 and 1.1 considered a heterozygote
(genotype=1),and between 1.9 and 2 considered ahomozygote for the
alternative allele (genotype=2); all other dosages were assigned amiss-
ing genotype. We performed approximate conditional analysis using a
window of 10Mb, collinearity = 0.9 and variants with a MAF>1%. We then
retained all variants that had anassociation P<107 in the GCTA-cojojoint
model. Theseindependently associated variants were thenincluded as
covariates when analyzing rare variants from exome sequencing data,
as described below. We used a P<107 to ensure that we included in the
subsequent conditional analyses of exome sequencing data any com-
mon variant signals that were close to (but not quite surpassed) the
more commonly used genome-wide significance threshold of P<5x10%,
However, whenreporting the number ofindependent common variant
signals for each trait, we consider only the subset that had a P<5x10°8, to
be consistent with previous studies. Overall, of the 492 traits for which



we performeda GWAS, 429 had at least one common variant with a P<107
and 421 had at least one common variant with a P<5x10°,

Having identified independent common variant signals for agiven
trait, we then tested if rare variant associations remained significant
after adjusting for those common variant signals. To this end, for each
trait, we repeated the association analysis in REGENIE (step 2 only; we
used the genome-wide predictors that were created in step 1as part of
the original analysis, which did not condition on any common variants)
but nowincluding as additional covariates the dosages for all common
variants that were found to have anindependent association with the
trait, as described above. Associations that exceeded a P<2.18x10™
in these conditional analyses were determined to be independent of
the common variant signals. Conditional analyses were performed
for429 (out 0f 492) that had at least one GWAS signal at P<107. For the
remaining 63 traits (=492-429), there were no common variants with
aP<107 and so for these traits rare variant signals were considered to
be independent of GWAS signals.

Number of rare variant associations expected to be found in
GWAS lociby chance

We determined if the number of rare variant associations that were
foundto be within1Mb of a GWAS signal (specifically 6,564 out of 8,865
associations) was greater than that expected by chance. The number
expected by chance was estimated as p *k, where p is the proportion
of significant associations among all association tests performed
across the genome, considering all rare variants (individual variants
and burden tests) and the 492 traits with at least one rare variant asso-
ciation; and kis the number of association tests performed across vari-
ants located within 1IMb of a GWAS signal, considering only the rare
variant-trait pairs for the matching GWAS common variant-trait pair, as
detailed below. Specifically,p=a/n=0.0000285, given that a=8,865,
thatis, the total number of rare variant associations with a P<2.18x10™
across the 492 traits; and n=311,080,453, that is, the total number of
rare variant association tests performed across the 492 traits. In turn,
kwas determined as follows: (i) for each of the 107,276 independent
GWAS signals, we identified rare variants that were located within 1
Mb of the GWAS sentinel variant and that were tested for association
with the same trait; (ii) for each trait, we then added the number of
rare variants tested across all GWAS signals for that trait, removing
duplicate entries, if any; and (iii) added the number of rare variant
tests performed across all traits. Using this approach, we found that
k=131,077,005 tests. Therefore, the number of significant rare variant
associations that were expected to be found within 1IMb of a GWAS
signal by chance was 0.0000285 *131,077,005=3,736.

Determining enrichment of rare variant associations among
genes in GWAS loci

We used the following approach to determine if genes located within
1Mb of GWAS signals were more likely to have asignificant rare variant
association (specifically aburden test with a P<2.18x10™ after control-
ling for GWAS signals, to ensure that rare and common variant signals
wereindependent) when compared to other genesinthe genome. First,
for each trait, we counted the number of genes that (i) were located
within1Mb of aGWAS sentinel variant and had a significant rare variant
association [a]; (i) were located within1Mb of a GWAS sentinel variant
and did not have asignificant rare variant association [b]; (iii) were not
located within1Mb of a GWAS sentinel variant and had a significant rare
variantassociation [c]; and (iv) were not located within 1Mb of a GWAS
sentinel variant and did not have a significant rare variant association
[d]. For a given trait, the fold-enrichment of significant rare variant
associations among genes within1Mb of a GWAS signal was estimated
as (a/b)/(c/d). Second, to obtain an overall measure of enrichment
across all traits, we used the Mantel-Haenszel approach to combine the
trait-specific enrichmentresults (specifically, the 2-by-2 table defined
by valuesa, b, cand d), with significance of the overall estimate being

determined by a chi-squared test. The GWAS signals considered in this
analysis were located >10Mb apart, to ensure that a given gene could
only be matched to asingle GWAS signal. We repeated this analysis for
different gene sets (e.g. genes located within 0.5 Mb of a GWAS signal;
10" nearest gene to a GWAS signal; nearest gene toa GWAS signal; etc)
and different thresholds to define significant rare variant associations
(P<107, P<10* and P<0.05). Of the 421 traits that had at least one gene
withasignificantrare variantassociation at P<2.18x10™ and also at least
one GWAS signal at P<5x10°®, we restricted this analysis to a subset of 188
traits (101 binary traits, 87 quantitative traits), obtained after excluding
highly redundant traits (for example, there were 20 traits related to
body mass, 14 traits related to bone mineral density, both absolute and
relative blood cell counts, self-reported and ICD10-based diagnoses).

Imputation of exome variants using a reference panel with array
and exome variants

We used SNP array and exome sequencing data from the UK Biobank on
454,378 individuals. For SNP array data, we excluded variants that were
notused duringaprevious round of phasing?, resulting in 670,423 SNP
array sites. For exome sequencing data, we excluded variants thathad a
minor allele count of one or that were flagged has potentially having low
quality by the machine learning approach described above, resulting
in 15,845,171 exome variants. We then phased these array and exome
datasets as follows. First, we built a haplotype scaffold by phasing SNP
array datawith SHAPEIT4.2.0%, phasing whole chromosomes at atime.
We then phased the exome sequencing data onto the array scaffold
in chunks of 10,000 variants, using 500 SNPs from the array dataas a
buffer at the beginning and end of each chunk. A consequence of this
process is that when a variant appears in both the array and exome
datasets, it is the data from the array dataset that is used.

The phased SNP array and exome sequencing dataset was splitinto
two sets: a set of 404,378 reference panel individuals and a target set
0f 50,000 individuals. To systematically study the effect of reference
panel size on imputation accuracy, we generated reference panels by
using2,500,10,000, 25,000, 50,000,100,000,200,000,300,000 and
400,000 individuals from the set of 404,378 individuals. Each reference
panel wasthen used toimpute exome variants using the SNP array data
fromthe 50,000 sample target dataset. Theimputation was carried out
on chromosome 2 only in chunks of 20 megabases using IMPUTES5*,
which exhibits sub-linear scaling as reference panel size grows. We
examined the sensitivity of these results to ancestry in two ways. Firstly,
by measuringimputationaccuracy in ancestry-specific subsets of the
50,000 target dataset for the 400,00 reference panel results (e.g. only
amongindividuals of South Asian ancestry). Secondly, we created a sin-
glereference panel of 300,000 individuals with PCA-derived European
ancestry and who self-reported as “White British”, and a separate test
dataset 0f 49,926 individuals with PCA-derived European ancestry who
did not self-identify as “White British”. This testing scenario is denoted
300,000 WBin Supplementary Table 23.

We measured imputation accuracy by comparing theimputed dosage
genotypes to the true (masked) genotypes at exome variants. Mark-
ers were binned according to the minor allele frequency (MAF) of the
marker ineither the reference panel or the full dataset of 454,374 indi-
viduals. In eachbin, we report the squared correlation (r*) between the
concatenated vector of all the true (masked) genotypes at markers and
the vector of allimputed dosages at the same markers. At the ultra-rare
end of the frequency spectrum we use individual values of minor allele
count (MAC) for the bins, instead of MAF.

We used imputation accuracy results obtained across different sizes
ofthereference panel (showninSupplementary Table 23) to extrapo-
late performance at larger reference panel sizes. For each MAC/MAF
binwe fitlogistic curve models to the r* values at reference panel sizes
N=50,000, 100,000, 200,000, 300,000 and 400,000 of the form r>
~c/(1+exp(-(a+b*log(N)))). We tried two versions of this model: a
2-parameter model with the asymptote (c) fixed at1,and a 3-parameter
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modelwhich hastherestriction that c£1. Allowing the logistic curve to
be parameterized on log(N) scale was important. We then used these
curvestoextrapolate tolarger reference panel sizes up toN=1,000,000.
The resulting fitted curves from the 2 and 3 parameter models are
shownin Extended DataFigure 9a and Supplementary Figure 9a, respec-
tively, with associated 95% confidence intervals estimated using the
delta method. To assess the accuracy of this approach, we repeated
the process by excluding the r? value for N=400,000, and then used
thelogistic curve to predict *at N=400,000 (shown by the blue dot on
each plotin Extended Data Figure 9a and Supplementary Figure 9a).
We then aggregated the results into single plots (Extended Data Fig-
ure 9b and Supplementary Figure 9b) that show both the results of our
imputation experiments together with the extrapolated values. The
2-parameter logistic model seems to over-estimate imputation accu-
racy insome MAC/MAF bins. This is especially evident when looking at
theN=400,000 prediction (Extended Data Figure 9b). The 3-parameter
logistic model seems to perform better for the N=400,000 prediction
except for the MAC=2 bin, where the predictions seem too high and
inconsistent with predictions at higher bins.

Prediction of pLOF carriers beyond 500,000 exomes

We estimated the number of pLOF carriers expected to be observed
in one and five million sequenced samples using a mixture model of
beta-binomial distributions, as previously described®. Model param-
eters were estimated using heterozygous and homozygous pLOF counts
per autosomal gene in 454,787 exomes spanning all ancestries.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Individual-level sequence data have been deposited with UK Biobank
and will be freely available to approved researchers, as done with other
genetic datasets to date. Individual-level phenotype data are already
available to approved researchers for the surveys and health-record
datasets from which all our traits are derived. Instructions for access
to UK Biobank data is available at https://www.ukbiobank.ac.uk/
enable-your-research. Full details for the trait associations with rare
variants described in this study are providedin Supplementary Data 2
and Data 3. The HapMap3 reference panel was downloaded from ftp://
ftp.ncbi.nlm.nih.gov/hapmap/. GnomAD v3.1 VCFs were obtained from
https://gnomad.broadinstitute.org/downloads. VCFs for TOPMED
Freeze 8 were obtained from https://bravo.sph.umich.edu/freeze8/
hg38/downloads#.LD scoresfrom 1000 Genomes Project were down-
loaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Code availability

The association analysis package used to perform all genetic associa-
tions is publicly available at https://github.com/rgcgithub/regenie.
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Extended DataFig.1|Lead trait associations for 564 genes witharare
variantassociationat P<2.18x10™. a, Associations with binary traits.
b, Associations with quantitative traits. Inred (and table): associations with

oddsratio>100 forbinary traitsand |effect| > 2 for quantitative traits.
Diamonds show associations that were no longer significant after accounting
for nearby GWAS signals.
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Extended DataFig.2|Power toidentify associations withrare variantsin (green) and 0.001% (yellow). Power to identify protective associations was low
the analysis 0f 430,998 participants of European ancestry fromthe UK becauseidentification of rare variants that reduce disease risk typically
Biobank. a, Protective associations (i.e. with an odds ratio <1). b, Predisposing requires very large numbers of cases, and population cohorts like that
associations (i.e. with an odds ratio >1). Power was estimated using asymptotic ascertained by the UK Biobank study typically include many more unaffected
theory (brokenlines) and also through simulations (solid lines), separately for than affected individuals for each disease.
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Extended DataFig.4 | Associations withcommonand rare variantsin
individuals of European ancestry. a, Number of traits tested and genetic
associations discovered in UKB 450K. An exome-wide association study
(EXWAS) was performed for 3,994 traits, of which 492 had at least one gene with
ararevariant (RV) association at P<2.18x107. Across all 492 traits, we identified
8,865 significant RV associations, alist thatincludes redundantassociations
arising from having tested multiple (often correlated) variants and traits per
gene.The 8,865 associations (including 6,588 or 74% located within1Mb of a
GWAS signal) reduced downto (i) 2,290 associations when selecting only the
mostsignificant association per gene per trait (Supplementary Data 2); and (ii)
564 associations when selecting only the most significant association per gene
(Supplementary Table 6). For each of the 492 traits with at least one RV
association, we performed agenome-wide association study (GWAS) using
TOPMed datafor the sameindividualsincluded in the EXWAS. Of the 492 traits,
421had atleast one common variant (CV) signal at P<5x10°®. Independent CV
associations were identified for each trait using approximate conditional
analysis, and then the number of independent associations was summed across

alltraits, for atotal of 107,276 associations (including 7,546 or 7% that were
located within1IMb of an EXWAS signal). b, Top half of the figure shows number
ofindependent CV signals (MAF>1% and conditionallyindependent) per trait,
from the TOPMed GWAS. Bottom half of the figure shows number of genes with
aRVassociation for the same trait from EXWAS. The x-axis shows all 492 traits
thathad one or more genes withaRV association, sorted by the number of CV
signals, with tiesin turn sorted by number of genes withaRV association. Traits
thatdid not have RV signals (3,994-492=3,506) are not shown on this plot.
Twenty-one binary traits that had two or more genes witha RV association but
no CVsignals from the GWAS are highlighted by the dashed box and listed in
Supplementary Table 13. ¢, This panel shows associations with RV before
(x-axis) and after (y-axis) accounting for the effect of CV signals. Of the 8,865 RV
associations, 796 (9%) were no longer significant at P<2.18x10™ after
accounting for CVsignals (see also Supplementary Table 17). The highlighted
association between HSPG2and alkaline phosphatase isan example of an
association that was greatly attenuated after controlling for the effect of CV
signals (regional association plots shownin Supplementary Figure 8).
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Extended DataFig. 5| Comparison of effect sizes across ancestries for 564
lead associationsidentified in Europeans. Foreachofthe 564 genes with at
leastonerare variantassociationinindividuals of European (EUR) ancestry, we
selected the most significant association (484 with a quantitative trait, 80 with
abinarytrait; see Supplementary Table 6) and then compared the effect size
estimated in Europeans with thatestimated inindividuals of South Asian (SAS),
African (AFR) and East Asian (EAS) ancestry, if available. a, Of the 484 gene
associations witha quantitative trait, 355 (83% directionally concordant), 347
(73%) and 210 (74%) were available in SAS, AFR and EAS, respectively. b, Of the
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80 geneassociations with abinary trait, 31(61% directionally concordant), 31
(61%) and 11 (64%) were availablein SAS, AFR and EAS, respectively. Red circles
represent associations with P<0.05in the corresponding non-European
ancestry. Numbersin the corner ofeach quadrant represent the proportion of
associationsinthat quadrant, out of the total number of associationsin black,
and outofthesubsetaP<0.05inred. Triangles: associations betweenbinary
traits and variants for which the minor allele count (MAC) was O in affected
individuals.
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Extended DataFig. 6 | Impact of burden mask composition onyield of
significant rare-variant associations.a, Comparison of the traitassociation
P-value betweenburdentests thatincluded pLOF variants witha minor allele
frequency (MAF) up to1% (x-axis) and burden tests thatincluded pLOF variants
withaMAF up to 0.1% (y-axis). For alarge fraction of associations (64% for
binarytraits, 79% for quantitative traits), the association P-value was the same
betweenthe twoburden test strategies, indicating that there were no (or very
few) variants witha MAF between 0.1% and 1% included in the burden test.
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b, Comparison ofassociationyield betweenburden tests thatincluded pLOF
variants only and burden tests thatincluded both pLOF and deleterious
missense variants. This comparison was performed separately for the five
differentallele frequency thresholds used to determine which variants were
aggregatedintheburdentest. The proportion of trait associations discovered
only when considering both pLOF and deleterious missense variantsincreased
steadily withincreasingallele frequency, from 19.7% (47/239) when testing only
singletons, to 42% (653/1,542) when considering variants withaMAF up to 1%.
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Extended DataFig. 8 | Number of genes with pLOF carriersinexome
sequencingdata. a, Predicted number of genes with heterozygote (top-left
panel) and homozygote (top-right panel) pLOF carriersin exome sequencing
datain datasets of up to 5 millionindividuals. Bottom panel shows distribution
ofthe observed number of heterozygote pLOF carriers per genein exome
sequencing of 454,787 individuals from the UK Biobank. b, Predicted number

of genes with heterozygote pLOF carriersin 5 millionindividuals basedona
reference dataset of (i) 46K individuals of European ancestry from the UKB
(solid lines); and (ii) 46K individuals from the UKB spanning multiple ancestries
(dashed lines), including 23K of European ancestry and all 23K individuals of
non-Europeanancestry (10K of South Asian, 9K of African, 2K of East Asian
ancestry and 2k of admixed ancestry).
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y-axis) as a function of the number of individuals included in the reference
panel (x-axis), foragiven allele frequency bin (estimated in the reference
panel). Grey dots show theimputationaccuracy that was observed when
analyzingreference panels withupto400,000individuals. Red dots show the
imputationaccuracy that was predicted for reference panels with>400,000
individuals, obtained by fitting a 2-parameter logistic curve toresults from
reference panels with <400,000 individuals. The fit from this logistic curveis
shownbythesolid line, with associated 95% confidence intervals showninlight

red. Theblue dotis the extrapolated value for areference panel of 400,000
individuals obtained by fitting the curve using only reference panels with
<400,000 individuals. b, Imputation accuracy (1%, y-axis) is shown as a function
ofthe variant allele frequency (x-axis; minor allele count [MAC] for ultra-rare
variants, minor allele frequency [MAF] for variants with MAF>10"*) and the
number ofindividuals (N) included in the reference panel (differentlines). Solid
lines show the imputation accuracy that was observed when analyzing
reference panels withup to400,000 individuals. Dashed lines show the
imputationaccuracy that was predicted for reference panels with >400,000
individuals, obtained by fitting a2-parameter logistic curve to results from
reference panels with<400,000 individuals.
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Extended Data Table 1| Novel gene associations identified through the analysis of a burden of singleton variants

Gene Trait Effect (95% Cl) P-value N with 01112 copies of Effect allele

effect allele® frequency
Burden of singleton pLOF variants
ACAN Whole-body fat-free mass -0.74 (-0.91, -0.58) 2.14E-18 423,62014410 5.2E-05
RRBP1 Apolipoprotein B -0.83 (-1.02, -0.64) 3.00E-18 410,02119210 1.1E-04
EP400 Hand grip strength -0.55 (-0.68, -0.42) 8.45E-16 429,19219610 1.1E-04
CHD2 Lymphocyte count 1.16 (0.87, 1.45) 1.97E-15 418,40814110 4.9E-05
SUPT5H Erythrocyte distribution width 1.64 (1.23, 2.06) 7.69E-15 419,17311910 2.3E-05
LARP1 Erythrocyte distribution width 1.19 (0.88, 1.51) 1.31E-13 419,15913310 3.9E-05
EEF2 Erythrocyte count -1.63 (-2.07,-1.18) 6.51E-13 419,18111210 1.4E-05
TNRC6B Hand grip strength -0.61 (-0.79, -0.44) 2.85E-12 429,23015810 6.8E-05
HMCN1 FEV,/FVC (inverted Z-score) 0.45 (0.32, 0.59) 1.07E-11 343,100120210 2.9E-04
FBN2 Impedance of arm 0.45 (0.32, 0.58) 1.24E-11 423,91519910 1.2E-04
Burden of singleton pLOF and deleterious missense variants

CAD Reticulocyte volume 0.60 (0.50, 0.70) 4.51E-31 412,190131110 3.8E-04
IGF1R Leg fat-free mass -0.41 (-0.49, -0.32) 1.62E-21 423,465118510 2.2E-04
SBNO2 Lymphocyte count 0.52 (0.40, 0.64) 4.24E-17 418,221122810 2.7E-04
FGD1° Impedance of arm -0.47 (-0.60, -0.35) 7.05E-14 423,931146115 9.0E-05
2ZNF12 Insulin growth factor 1 0.84 (0.59, 1.08) 1.86E-11 409,87415210 6.3E-05

? Effect allele for burden tests: individuals were considered to have O copies of the effect allele if they were homozygote for the reference allele for all variants included in the burden test; 1 copy
of the effect allele if they were heterozygote for at least one variant; and 2 copies if they were homozygote for the alternate allele for at least one variant.

® FGD1is located on the X-chromosome; male hemizygous are included in the number of individuals with 2 copies of the effect allele.

Abbreviations: pLOF - putative loss-of-function. Cl - confidence interval. FEV, - forced expiratory volume in 1second. FVC - forced vital capacity.
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Data analysis The association analysis package used to perform all genetic associations is available at https://github.com/rgcgithub/regenie. GCTA v1.91.7
was used for approximate conditional analysis. LDSC v1.0.1 was used LD score regression. with SHAPEIT4.2.0 was used for phasing of SNP
array data. Imputation was completed with IMPUTES.
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topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8. LD scores from 1000 Genomes Project were downloaded from https://
data.broadinstitute.org/alkesgroup/LDSCORE/.
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Sample size Sample size was not predetermined. Association analyses were restricted to the intersection of samples with both exome sequence and array
genotypes available after QC. See methods section "Exome sequencing" for details on QC performed. All samples that pass genotype QC and
with non-missing phenotype data were included in association analyses. We performed power calculations (Extended data figure 4) that
suggest we are well-powered to detect genetic associations under a variety of scenarios, although there may be some traits for which we did
not have adequate sample size.

Data exclusions  Phenotype selection and QC was performed as described in methods section "Health- and behavior-related phenotypes." Variant level QC was
performed as described in methods section "Exome sequencing." Variants with minor allele count less than five were excluded from
association testing. The minor allele count threshold was pre-determined based on extensive simulations performed with REGENIE. See
https://www.nature.com/articles/s41588-021-00870-7 for additional details.

Replication Replication was attempted for all significant variant-trait associations available for follow-up in the DiscovEHR study. 81% of associations
available and powered for replication were confirmed.

Randomization  Randomization was not required for the analyses completed in this study. To control for confounding, we performed association analysis with
the following covariates included in the regression model: age, age-squared, sex, age-x-sex, 10 ancestry-informative principal components, six
exome sequence batch indicator variables, and 20 principal components derived from exome variants with a MAF between 2.6x10-5 and 1%.

Blinding Blinding was not required for the analyses completed in this study. Participant recruitment and phenotype collection were obtained without

prior knowledge of sample genotypes. Association analyses were performed with all available samples, without any filtering based on sample
genotypes.
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Population characteristics The UK Biobank is a prospective cohort study previously described in detail by Bycroft et al, Nature 2018 (https://
www.nature.com/articles/s41586-018-0579-z). Briefly, 94.7% of sequenced participants are of European ancestry, 54.2% are
female, the average age at assessment is 58, and the mean BMlI is 26. 45% of participants report a history of smoking, and
each participant reports 8 inpatient ICD10 3D codes, on average. See supplementary table 1 for additional details.

Recruitment Please see Bycroft et al, Nature 2018.

Ethics oversight Ethical approval for the UK Biobank was previously obtained from the North West Centre for Research Ethics Committee (11/
NW/0382). The work described herein was approved by UK Biobank under application number 26041. Approval for
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DiscovEHR analyses was provided by the Geisinger Health System Institutional Review Board under project number
2006-0258. Informed consent was obtained for all study participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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