Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter

Abstract

Establishing when, and from where, carbon, nitrogen and water were delivered to Earth is a fundamental objective in understanding the origin of habitable planets such as Earth. Yet, volatile delivery to Earth remains controversial1,2,3,4,5. Krypton isotopes provide insights on volatile delivery owing to their substantial isotopic variations among sources6,7,8,9,10, although pervasive atmospheric contamination has hampered analytical efforts. Here we present the full suite of krypton isotopes from the deep mantle of the Galápagos and Iceland plumes, which have the most primitive helium, neon and tungsten isotopic compositions11,12,13,14,15,16. Except for 86Kr, the krypton isotopic compositions are similar to a mixture of chondritic and atmospheric krypton. These results suggest early accretion of carbonaceous material by proto-Earth and rule out any combination of hydrodynamic loss with outgassing of the deep or shallow mantle to explain atmospheric noble gases. Unexpectedly, the deep-mantle sources have a deficit in the neutron-rich 86Kr relative to the average composition of carbonaceous meteorites, which suggests a nucleosynthetic anomaly. Although the relative depletion of neutron-rich isotopes on Earth compared with carbonaceous meteorites has been documented for a range of refractory elements1,17,18, our observations suggest such a depletion for a volatile element. This finding indicates that accretion of volatile and refractory elements occurred simultaneously, with krypton recording concomitant accretion of non-solar volatiles from more than one type of material, possibly including outer Solar System planetesimals.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Krypton isotopic patterns of Galápagos and Iceland samples.
Fig. 2: Krypton isotopic compositions of Galápagos and Iceland samples.
Fig. 3: Xenon isotope composition of Galápagos and Iceland samples.
Fig. 4: Mixing proportions in the plume sources.
Fig. 5: Estimated 86Kr/84Kr ratio based on different mixing scenarios.

Data availability

The geochemical data that support the findings of this study are archived on EarthChem at https://ecl.earthchem.org/view.php?id=2065Source data are provided with this paper.

References

  1. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  2. Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    ADS  PubMed  Google Scholar 

  3. Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    ADS  CAS  Google Scholar 

  4. Moreira, M. Noble gas constraints on the origin and evolution of Earth’s volatiles. Geochem. Perspect. 2, 229–403 (2013).

    Google Scholar 

  5. Clay, P. L. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614–618 (2017).

    ADS  CAS  PubMed  Google Scholar 

  6. Ozima, M. & Zashu, S. Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmochim. Acta 52, 19–25 (1988).

    ADS  CAS  Google Scholar 

  7. Ozima, M. & Zashu, S. Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105, 13–27 (1991).

    ADS  CAS  Google Scholar 

  8. Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Perspect. Lett. 9, 21–25 (2018).

    Google Scholar 

  9. Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    ADS  CAS  PubMed  Google Scholar 

  10. Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Péron, S. et al. Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016).

    ADS  Google Scholar 

  12. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    ADS  CAS  Google Scholar 

  13. Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galapagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).

    ADS  CAS  Google Scholar 

  14. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    ADS  CAS  PubMed  Google Scholar 

  15. Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allègre, C. J. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000).

    ADS  CAS  PubMed  Google Scholar 

  16. Harrison, D., Burnard, P. & Turner, G. Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet. Sci. Lett. 171, 199–207 (1999).

    ADS  CAS  Google Scholar 

  17. Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenum–neodymium isotope correlation and the building material of the Earth. Geochem. Perspect. Lett. 3, 170–178 (2017).

    Google Scholar 

  18. Akram, W., Schönbächler, M., Bisterzo, S. & Gallino, R. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the Solar System. Geochim. Cosmochim. Acta 165, 484–500 (2015).

    ADS  CAS  Google Scholar 

  19. Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    ADS  CAS  Google Scholar 

  20. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    ADS  Google Scholar 

  21. Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    ADS  CAS  PubMed  Google Scholar 

  22. Harper, C. L. & Jacobsen, S. B. Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996).

    ADS  CAS  Google Scholar 

  23. O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘grand tack’ scenario. Icarus 239, 74–84 (2014).

    ADS  Google Scholar 

  24. Meshik, A., Hohenberg, C., Pravdivtseva, O. & Burnett, D. Heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 127, 326–347 (2014).

    ADS  CAS  PubMed  Google Scholar 

  25. Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in ‘Phase Q’ in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

    ADS  CAS  Google Scholar 

  26. Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    ADS  CAS  PubMed  Google Scholar 

  27. Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).

    ADS  CAS  Google Scholar 

  28. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    ADS  CAS  PubMed  Google Scholar 

  29. Ballentine, C. J. & Barfod, D. N. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39–48 (2000).

    ADS  CAS  Google Scholar 

  30. Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of primitive volatile component. Science 285, 2115–2118 (1999).

    CAS  PubMed  Google Scholar 

  31. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    ADS  CAS  PubMed  Google Scholar 

  32. Bekaert, D. V., Broadley, M. W., Caracausi, A. & Marty, B. Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).

    CAS  Google Scholar 

  33. Parai, R. & Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16, 719–735 (2015).

    ADS  CAS  Google Scholar 

  34. Busemann, H. & Eugster, O. The trapped noble gas component in achondrites. Meteorit. Planet. Sci. 37, 1865–1891 (2002).

    ADS  CAS  Google Scholar 

  35. Broadley, M. W., Bekaert, D. V., Marty, B., Yamaguchi, A. & Barrat, J.-A. Noble gas variations in ureilites and their implications for ureilite parent body formation. Geochim. Cosmochim. Acta 270, 325–337 (2020).

    ADS  CAS  Google Scholar 

  36. Pető, M. K., Mukhopadhyay, S. & Kelley, K. A. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369–370, 13–23 (2013).

    ADS  Google Scholar 

  37. Ott, U., Begemann, F., Yang, J. & Epstein, S. S-process krypton of variable isotopic composition in the Murchison meteorite. Nature 332, 700–702 (1988).

    ADS  CAS  PubMed  Google Scholar 

  38. Lewis, R. S., Amari, S. & Anders, E. Interstellar grains in meteorites: II. SiC and its noble gases. Geochim. Cosmochim. Acta 58, 471–494 (1994).

    ADS  CAS  Google Scholar 

  39. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS  CAS  PubMed  Google Scholar 

  40. Pepin, R. O. & Porcelli, D. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250, 470–485 (2006).

    ADS  CAS  Google Scholar 

  41. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    ADS  CAS  Google Scholar 

  42. Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    ADS  CAS  Google Scholar 

  43. Rubin, M. et al. Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 4, eaar6297 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  44. Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).

    ADS  CAS  Google Scholar 

  45. Heber, V. S. et al. Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414–7432 (2009).

    ADS  CAS  Google Scholar 

  46. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    ADS  CAS  Google Scholar 

  47. Lock, S. J. & Stewart, S. T. The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. J. Geophys. Res. Planets 122, 950–982 (2017).

    ADS  Google Scholar 

  48. Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006).

    ADS  Google Scholar 

  50. Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    ADS  Google Scholar 

  51. Geist, D. et al. Submarine Fernandina: magmatism at the leading edge of the Galapagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).

    ADS  Google Scholar 

  52. Peterson, M. E. et al. Submarine basaltic glasses from the Galapagos Archipelago: determining the volatile budget of the mantle plume. J. Petrol. 58, 1419–1450 (2017).

    ADS  CAS  Google Scholar 

  53. Graham, D. W., Hanan, B. B., Hémond, C., Blichert‐Toft, J. & Albarède, F. Helium isotopic textures in Earth’s upper mantle. Geochem. Geophys. Geosyst. 15, 2048–2074 (2014).

    ADS  CAS  Google Scholar 

  54. Colin, A., Moreira, M., Gautheron, C. & Burnard, P. Constraints on the noble gas composition of the deep mantle by bubble-by-bubble analysis of a volcanic glass sample from Iceland. Chem. Geol. 417, 173–183 (2015).

    ADS  CAS  Google Scholar 

  55. Péron, S., Mukhopadhyay, S. & Huh, M. A new dual stainless steel cryogenic trap for efficient separation of krypton from argon and xenon. J. Analyt. At. Spectrom. 35, 2663–2671 (2020).

    Google Scholar 

  56. Lott, D. E. III Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem. Geophys. Geosyst. 2, 1068 (2001).

    ADS  Google Scholar 

  57. Stanley, R. H. R., Baschek, B., Lott, D. E. III & Jenkins, W. J. A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem. Geophys. Geosyst. 10, Q05008 (2009).

    ADS  Google Scholar 

  58. Kunz, J., Staudacher, T. & Allègre, C. J. Plutonium-fission xenon found in Earth’s mantle. Science 280, 877–880 (1998).

    ADS  CAS  PubMed  Google Scholar 

  59. Moreira, M., Kunz, J. & Allègre, C. J. Rare gas systematics on popping rock: estimates of isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    ADS  CAS  PubMed  Google Scholar 

  60. Parai, R. & Mukhopadhyay, S. Heavy noble gas signatures of the North Atlantic Popping Rock 2ΠD43: implications for mantle noble gas heterogeneity. Geochim. Cosmochim. Acta 294, 89–105 (2021).

    ADS  CAS  Google Scholar 

  61. Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355–356, 244–254 (2012).

    ADS  Google Scholar 

  62. Parai, R., Mukhopadhyay, S. & Standish, J. J. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359–360, 227–239 (2012).

    ADS  Google Scholar 

  63. Moreira, M., Rouchon, V., Muller, E. & Noirez, S. The xenon isotopic signature of the mantle beneath Massif Central. Geochem. Perspect. Lett. 6, 28–32 (2018).

    Google Scholar 

  64. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 2002).

  65. Huss, G. R. & Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).

    ADS  CAS  Google Scholar 

  66. Pepin, R. O. On noble gas processing in the solar accretion disk. Space Sci. Rev. 106, 211–230 (2003).

    ADS  CAS  Google Scholar 

  67. Eugster, O., Eberhardt, P. & Geiss, J. Krypton and xenon isotopic composition in three carbonaceous chondrites. Earth Planet. Sci. Lett. 3, 249–257 (1967).

    ADS  CAS  Google Scholar 

  68. Marti, K. Isotopic composition of trapped krypton and xenon in chondrites. Earth Planet. Sci. Lett. 3, 243–248 (1967).

    ADS  CAS  Google Scholar 

  69. Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Heavy noble gases in Leoville: The case for mass fractionated xenon in carbonaceous chondrites. J. Geophys. Res. 75, 5693–5701 (1970).

    ADS  Google Scholar 

  70. Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the general isotopic anomalies in meteoritic xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).

    ADS  CAS  Google Scholar 

  71. Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Isotopic compositions of rare gases in the carbonacaous chondrites Mokoia and Allende. Geochim. Cosmochim. Acta 36, 961–983 (1972).

    ADS  CAS  Google Scholar 

  72. Matsuda, J.-I., Lewis, R. S., Takahashi, H. & Anders, E. Isotopic anomalies of noble gases in meteorites and their origins—VII. C3V carbonaceous chondrites. Geochim. Cosmochim. Acta 44, 1861–1874 (1980).

    ADS  CAS  Google Scholar 

  73. Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, M. R. Jr & Murthy, V. R. Krypton and xenon in lunar fines. Lunar Planet. Sci. Proc. 4, 1915–1955 (1973).

    ADS  Google Scholar 

  74. Nier, A. O. A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon and mercury. Phys. Rev. 79, 450–454 (1950).

    ADS  CAS  Google Scholar 

  75. Nief, G. Isotopic Abundance Ratios Given for Reference Samples Stocked by the National Bureau of Standards (ed. Mohler, F.) NBS Technical Note 51 (National Bureau of Standards, 1960).

  76. Eugster, O., Eberhardt, P. & Geiss, J. The isotopic composition of krypton in unequilibrated and gas rich chondrites. Earth Planet. Sci. Lett. 2, 385–393 (1967).

    ADS  CAS  Google Scholar 

  77. Marti, K., Eberhardt, P. & Geiss, J. Spallation, fission, and neutron capture anomalies in meteoritic krypton and xenon. Z. Naturforsch. A 21, 398–426 (1966).

    ADS  CAS  Google Scholar 

  78. Eugster, O. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr–Kr exposure ages. Geochim. Cosmochim. Acta 52, 1649–1662 (1988).

    ADS  CAS  Google Scholar 

  79. Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).

    CAS  Google Scholar 

  80. Eugster, O., Eberhardt, P. & Geiss, J. Isotopic analyses of krypton and xenon in fourteen stone meteorites. J. Geophys. Res. 74, 3874–3896 (1969).

    ADS  CAS  Google Scholar 

  81. Nakashima, D. & Nakamura, T. Trapped noble gas components and exposure history of the enstatite chondrite ALH84206. Geochem. J. 40, 543–555 (2006).

    ADS  CAS  Google Scholar 

  82. Okazaki, R., Takaoka, N., Nagao, K. & Nakamura, T. Noble gases in enstatite chondrites released by stepped crushing and heating. Meteorit. Planet. Sci. 45, 339–360 (2010).

    ADS  CAS  Google Scholar 

  83. Heber, V. S. et al. Isotopic fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis Mission. Astrophys. J. 759, 121–133 (2012).

    ADS  Google Scholar 

  84. Pepin, R. O., Schlutter, D. J., Becker, R. H. & Reisenfeld, D. B. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Huh for assistance in the lab; and M. Huyskens, S. Stewart and S. J. Lock for helpful discussions and comments on the manuscript. The He isotope analyses in the OSU noble gas lab were supported by NSF 1763255. The collection of the Fernandina samples and WHOI participation was supported by NSF Ocean Sciences.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and S.M. designed the study. S.P. carried out the noble gas (Ne, Ar, Kr and Xe) analyses, interpreted the data and wrote the manuscript with feedback from S.M. M.D.K. and D.W.G. provided the samples, discussed the results and contributed to the final manuscript preparation. D.W.G. carried out the He and CO2 analyses of sample DG2017.

Corresponding author

Correspondence to Sandrine Péron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Hirochika Sumino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Krypton isotopic patterns for each analysis.

Isotopic ratios are in delta notation δiKr = ((iKr/84Kr)sample/(iKr/84Kr)air − 1) × 103. a, Sample D22B-1. b, Sample D22B-2. c, Sample D22B-3. d, Sample D22A. e, Samples DG2017-1 and DG2017-2. Patterns of solar wind24, AVCC and Phase Q25 are shown for reference.

Source data

Extended Data Fig. 2 Krypton–neon isotope plot.

The krypton isotopic compositions of the Galápagos and Iceland mantle sources are not precisely known; our data represent a lower limit as explained in Methods. As such, a range is indicated for the deep mantle spanning the Phase Q and AVCC Kr isotopic compositions. The mixing hyperbolae show that accumulating crushing steps with 20Ne/22Ne ratios >11.75 allow to obtain Kr isotopic ratios close to the mantle source ratios.

Source data

Extended Data Fig. 3 Estimation of the probability of the observed deficit in 86Kr for the D22 (Galápagos) and DG2017 (Iceland) samples.

The black rectangle represents the probability (0.01%) that both measured 86Kr/84Kr ratios for the Galápagos and Iceland plume sources are higher than the predicted values (Fig. 5). The white rectangle represents the probability that both measured ratios are lower than the predicted values, the blue rectangle that the measured ratio for the Galápagos source is lower than the predicted value with the measured ratio for Iceland being higher than the predicted value, and the green rectangle that the measured ratio for the Iceland source is lower than the predicted value with the measured ratio for Galápagos being higher than the predicted value. There is a 99.9% probability that Earth’s deep mantle has a deficit in 86Kr relative to AVCC.

Extended Data Fig. 4 Reproducibility of the air standard for krypton isotopic ratios.

a, 78Kr/84Kr. b, 80Kr/84Kr. c, 82Kr/84Kr. d, 83Kr/84Kr. e, 86Kr/84Kr. This set of standards was measured over 13 days and include three sizes of air standard, ranging from 7.52 × 10−12 cc to 2.37 × 10−11 cc of 84Kr. For the samples, only one size of the air standard was used (84Kr of 2.37 × 10−11 cc), measurements of this air standard size show an even better reproducibility (typically of 2‰ for 78Kr/84Kr, of 2.5‰ for 80Kr/84Kr, of 1‰ for 82Kr/84Kr, of 1.5‰ for 83Kr/84Kr and of 1‰ for 86Kr/84Kr).

Extended Data Fig. 5 Three-neon isotope plot for the step-crushing analyses and argon–neon isotope plot for the accumulated gas.

a, Neon isotopic ratios for samples D22B-1, D22B-2, D22B-3 and D22A (Galápagos), compared with literature data11. b, Neon isotopic ratios for samples DG2017-1 and DG2017-2 (Iceland), compared with literature data14,15,54. Supplementary Table 2 indicates for which step heavy noble gases were accumulated. Neon-B4, Sun83, solar wind84. c, 40Ar/36Ar versus 20Ne/22Ne for samples D22B-1, D22B-2, D22B-3 and D22A (Galápagos), compared with literature data11. d, 40Ar/36Ar versus 20Ne/22Ne for samples DG2017-1 and DG2017-2 (Iceland) compared with literature data14,15,54. The 20Ne/22Ne ratios for samples D22B-1, D22B-2, D22B-3, D22A, DG2017-1 and DG2017-2 are the average ratios of the accumulated steps, refer to Supplementary Table 2. The measured 40Ar/36Ar ratios as well as the average 20Ne/22Ne ratios are consistent with previous measurements for these same samples.

Source data

Extended Data Table 1 Krypton isotopic compositions of samples AHA-NEMO2-D22A and AHA-NEMO2-D22B (hereafter D22A and D22B, Fernandina, Galápagos, respectively) and DG2017 (Midfell, Iceland)
Extended Data Table 2 Xenon abundances and isotopic ratios measured with the accumulation protocol for the Galápagos (AHA-NEMO2-D22A and AHA-NEMO2-D22B) and Iceland (DG2017) samples
Extended Data Table 3 Compilation of carbonaceous, ordinary and enstatite chondrites krypton isotopic data67,68,69,70,80,81,82
Extended Data Table 4 Argon abundances and isotopic ratios measured with the accumulation protocol for the Galápagos (AHA-NEMO2-D22A and AHA-NEMO2-D22B) and Iceland (DG2017) samples
Extended Data Table 5 Results of the accumulation tests with air standard aliquots of 7.52 × 10−12 cc of 84Kr

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1 and 2.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Péron, S., Mukhopadhyay, S., Kurz, M.D. et al. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021). https://doi.org/10.1038/s41586-021-04092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04092-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing