Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-frequency and intrinsically stretchable polymer diodes


Skin-like intrinsically stretchable soft electronic devices are essential to realize next-generation remote and preventative medicine for advanced personal healthcare1,2,3,4. The recent development of intrinsically stretchable conductors and semiconductors has enabled highly mechanically robust and skin-conformable electronic circuits or optoelectronic devices2,5,6,7,8,9,10. However, their operating frequencies have been limited to less than 100 hertz, which is much lower than that required for many applications. Here we report intrinsically stretchable diodes—based on stretchable organic and nanomaterials—capable of operating at a frequency as high as 13.56 megahertz. This operating frequency is high enough for the wireless operation of soft sensors and electrochromic display pixels using radiofrequency identification in which the base-carrier frequency is 6.78 megahertz or 13.56 megahertz. This was achieved through a combination of rational material design and device engineering. Specifically, we developed a stretchable anode, cathode, semiconductor and current collector that can satisfy the strict requirements for high-frequency operation. Finally, we show the operational feasibility of our diode by integrating it with a stretchable sensor, electrochromic display pixel and antenna to realize a stretchable wireless tag. This work is an important step towards enabling enhanced functionalities and capabilities for skin-like wearable electronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A high-frequency stretchable diode.
Fig. 2: Characterization of stretchable current collectors based on AgNWs.
Fig. 3: High-frequency operation of the stretchable diodes.
Fig. 4: A wireless stretchable sensor and display system.

Data availability

Source data are provided with this paper.


  1. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  CAS  Google Scholar 

  2. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Zheng, Y. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013).

    Article  CAS  ADS  Google Scholar 

  7. Kim, H., Sim, K., Thukral, A. & Yu, C. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, e1701114 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Kim, J.-H. & Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv.7, eabd9715 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Wang, Z. et al. Intrinsically stretchable organic solar cells beyond 10% power conversion efficiency enabled by transfer printing method. Adv. Funct. Mater. 31, 2103534 (2021).

    Article  CAS  Google Scholar 

  10. Noh, J. et al. Intrinsically stretchable organic solar cells with efficiencies of over 11%. ACS Energy Lett. 6, 2512–2518 (2021).

    Article  CAS  Google Scholar 

  11. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures toward soft electronics. Adv. Mater. 30, 1801368 (2018).

    Article  Google Scholar 

  15. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, H., Thukral, A., Sharma, S. & Yu, C. Biaxially stretchable fully elastic transistors based on rubbery semiconductor nanocomposites. Adv. Mater. Technol. 3, 1800043 (2018).

    Article  Google Scholar 

  20. Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, 14 (2019).

    Article  Google Scholar 

  21. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article  Google Scholar 

  22. Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

  23. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, 587 (2019).

    Article  ADS  Google Scholar 

  24. Steudel, S. et al. Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. J. Appl. Phys. 99, 114519 (2006).

    Article  ADS  Google Scholar 

  25. Viola, F. A. et al. A 13.56 MHz rectifier based on fully inkjet printed organic diodes. Adv. Mater. 32, 2002329 (2020).

    Article  CAS  Google Scholar 

  26. Higgins, S. G., Agostinelli, T., Markham, S., Whiteman, R. & Sirringhaus, H. Organic diode rectifiers based on a high‐performance conjugated polymer for a near‐field energy‐harvesting circuit. Adv. Mater. 29, 1703782 (2017).

    Article  Google Scholar 

  27. Zhou, X., Yang, D. & Ma, D. Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3, 1570–1576 (2015).

    Article  CAS  Google Scholar 

  28. Huang, J. et al. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 32, 1906027 (2020).

    Article  CAS  Google Scholar 

  29. Heljo, P. S., Schmidt, C., Klengel, R., Majumdar, H. S. & Lupo, D. Electrical and thermal analysis of frequency dependent filamentary switching in printed rectifying diodes. Org. Electron. 20, 69–75 (2015).

    Article  CAS  Google Scholar 

  30. Bose, I., Tetzner, K., Borner, K. & Bock, K. Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags. Microelectron. Reliab. 54, 1643–1647 (2014).

    Article  CAS  Google Scholar 

  31. Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Gao, H., Chen, S., Liang, J. & Pei, Q. Elastomeric light emitting polymer enhanced by interpenetrating networks. ACS Appl. Mater. Interfaces 8, 32504–32511 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Li, L. et al. A solid-state intrinsically stretchable polymer solar cell. ACS Appl. Mater. Interfaces 9, 40523–40532 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh, Y. T. et al. Realization of intrinsically stretchable organic solar cells enabled by charge-extraction layer and photoactive material engineering. ACS Appl. Mater. Interfaces 10, 21712–21720 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Matsuhisa, N. et al. High‐transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5, 1900347 (2019).

    Article  Google Scholar 

  37. Zhou, Y. et al. A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Lipomi, D. J., Tee, B. C.-K., Vosgueritchian, M. & Bao, Z. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Steudel, S. et al. 50 MHz rectifier based on an organic diode. Nat. Mater. 4, 597–600 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Kang, C. et al. 1 GHz pentacene diode rectifiers enabled by controlled film deposition on SAM-treated Au anodes. Adv. Electron. Mater. 2, 1500282 (2016).

    Article  Google Scholar 

  42. Matsuhisa, N. et al. A mechanically durable and flexible organic rectifying diode with a polyethylenimine ethoxylated cathode. Adv. Electron. Mater. 2, 1600259 (2016).

    Article  Google Scholar 

  43. Borchert, J. W. et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci. Adv. 6,1–9 (2020).

  44. Yamamura, A. et al. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv. 4, 21 (2018).

    Article  Google Scholar 

  45. Wang, X. et al. Printed conformable liquid metal e‐skin‐enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv. Funct. Mater. 29, 1907063 (2019).

    Article  CAS  Google Scholar 

  46. Liu, Z. et al. Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 27, 6230–6237 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. JK O’Neill, S. et al. A carbon flower based flexible pressure sensor made from large‐area coating. Adv. Mater. Interfaces 7, 2000875 (2020).

    Article  Google Scholar 

  48. Jeon, J., Lee, H.-B.-R. & Bao, Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, C. et al. Thiophene-diketopyrrolopyrrole-based quinoidal small molecules as solution-processable and air-stable organic semiconductors: tuning of the length and branching position of the alkyl side chain toward a high-performance n-channel organic field-effect tran. ACS Appl. Mater. Interfaces 7, 15978–15987 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Ito, Y. et al. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396–9404 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Tahk, D., Lee, H. H. & Khang, D.-Y. Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42, 7079–7083 (2009).

    Article  CAS  ADS  Google Scholar 

  52. Kawahara, J., Ersman, P. A., Engquist, I. & Berggren, M. Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Org. Electron. 13, 469–474 (2012).

    Article  CAS  Google Scholar 

Download references


This work was partially supported by SAIT, Samsung Electronics Co., Ltd., and the Agency for Science, Technology and Research (A*STAR) under its Advanced Manufacturing and Engineering (AME) Programmatic Scheme (no. A18A1b0045). N.M. was partially supported by a Japan Society for the Promotion of Science (JSPS) overseas research fellowship. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152. Grazing incidence X-ray diffraction measurements were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. Experiments performed during revision were carried out in Keio University and was supported by JST, PRESTO Grant Number JPMJPR20B7, Japan.

Author information

Authors and Affiliations



N.M., S.N., X.C. and Z.B. designed the project and experiments. S.N. and D.Z. performed the simulation of a diode, circuit and wireless communication. T.K. designed DPP4T-oSi10. Y.O., T.K., M.A., G.-J.N.W. and Y.Z. synthesized DPP4T-oSi10. N.M., Y.O., T.K. and H.-C.W. characterized DPP4T-oSi10. J.K. synthesized ION E. N.M., S.J.K.O., H.-C.W. and R.N. developed stretchable PEDOT:PSS. H.G. performed XPS. N.M., S.J.K.O., R.N., I.Y. and Z.Z. developed stretchable AgNWs. N.M., S.J.K.O., R.N. and X.G. developed the fabrication process of stretchable diodes. N.M. and X.W. fabricated O-GaIn. N.M., S.N. and X.C. developed CNT strain sensors. N.M. and S.J.K.O. developed stretchable ECDs. S.N. developed the flexible power-supply circuit. N.M., S.N., J.B.-H.T. and Z.B. wrote the manuscript.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–50, Tables 1–60 and Notes I–XIV.

Supplementary Data

This file contains the source data of the plots in the Supplementary Information.

Supplementary Video 1

Operation of the stretchable ECD under 0% strain. The ECD showed a fast response up to 10 Hz.

Supplementary Video 2

Operation of the stretchable ECD under 20% strain. The ECD showed a fast response up to 10 Hz.

Supplementary Video 3

Operation of the stretchable ECD under 50% strain. The ECD showed a fast response up to 10 Hz.

Supplementary Video 4

Wireless operation of the stretchable sensor and display system. Strain larger than 20% increased the resistance of the integrated strain sensor, and a clear colour change of the ECD was observed.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsuhisa, N., Niu, S., O’Neill, S.J.K. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing