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Efficient and targeted COVID-19 border 
testing via reinforcement learning


Hamsa Bastani1,7, Kimon Drakopoulos2,7 ✉, Vishal Gupta2,7, Jon Vlachogiannis3, 
Christos Hadjicristodoulou4, Pagona Lagiou5, Gkikas Magiorkinis5, Dimitrios Paraskevis5 & 
Sotirios Tsiodras6

Throughout the COVID-19 pandemic, countries relied on a variety of ad-hoc border 
control protocols to allow for non-essential travel while safeguarding public health: 
from quarantining all travellers to restricting entry from select nations based on 
population-level epidemiological metrics such as cases, deaths or testing positivity 
rates1,2. Here we report the design and performance of a reinforcement learning 
system, nicknamed ‘Eva’. In the summer of 2020, Eva was deployed across all Greek 
borders to limit the influx of asymptomatic travellers infected with SARS-CoV-2, and 
to inform border policies through real-time estimates of COVID-19 prevalence. In 
contrast to country-wide protocols, Eva allocated Greece’s limited testing resources 
based upon incoming travellers’ demographic information and testing results from 
previous travellers. By comparing Eva’s performance against modelled 
counterfactual scenarios, we show that Eva identified 1.85 times as many 
asymptomatic, infected travellers as random surveillance testing, with up to 2-4 times 
as many during peak travel, and 1.25-1.45 times as many asymptomatic, infected 
travellers as testing policies that only utilize epidemiological metrics. We 
demonstrate that this latter benefit arises, at least partially, because population-level 
epidemiological metrics had limited predictive value for the actual prevalence of 
SARS-CoV-2 among asymptomatic travellers and exhibited strong country-specific 
idiosyncrasies in the summer of 2020. Our results raise serious concerns on the 
effectiveness of country-agnostic internationally proposed border control policies3 
that are based on population-level epidemiological metrics. Instead, our work 
represents a successful example of the potential of reinforcement learning and 
real-time data for safeguarding public health.

In the first wave of the pandemic, many countries restricted non-essential 
travel to mitigate the spread of SARS-CoV-2. The restrictions crippled 
most tourist economies, with estimated losses of 1 trillion USD among 
European countries and 19 million jobs3. As conditions improved from 
April to July, countries sought to partially lift these restrictions, not only 
for tourists, but also for the flow of goods and labor.

Different countries adopted different border screening protocols, 
typically based upon the origin country of the traveler. Despite their 
variety, we group the protocols used in early summer 2020 into 4 broad 
types:
•	Allowing unrestricted travel from designated “white-list” countries.
•	Requiring travelers from designated “grey-listed” countries to provide 

proof of a negative RT-PCR test before arrival.
•	Requiring all travelers from designated “red-listed” countries to 

quarantine upon arrival.

•	Forbidding any non-essential travel from designated “black-listed” 
countries.
Most nations employed a combination of all four strategies. How-

ever, the choice of which “color” to assign to a country differed across 
nations. For example, as of July 1st, 2020, Spain designated the countries 
specified in1 as white-listed, Croatia designated these countries as 
grey-listed or red-listed.

To the best of our knowledge, in all European nations except Greece, 
the above “color designations” were entirely based on population-level 
epidemiological metrics (e.g., see1,2) such as cases per capita, deaths 
per capita, and/or positivity rates that were available in the public 
domain4–6. (An exception is the UK, which engaged in small-scale testing 
at select airports that may have informed their policies.) However such 
metrics are imperfect due to underreporting7, symptomatic population 
biases8–10 and reporting delays.
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These drawbacks motivated our design and nation-wide deployment 

of Eva: the first fully algorithmic, real-time, reinforcement learning sys-
tem for targeted COVID-19 screening with the dual goals of identifying 
asymptomatic, infected travelers and providing real-time information 
to policymakers for downstream decisions.

The Eva System: Overview
Eva as presented here was deployed across all 40 points of entry to 
Greece, including airports, land crossings, and seaports from August 
6th to November 1st. Fig. 1 schematically illustrates its operation; Fig. 7 
in Methods provides a more detailed schematic of Eva’s architecture 
and data flow.

1. Passenger Locator Form (PLF)
All travelers must complete a PLF (one per household) at least 24 hours 
prior to arrival, containing (among other data) information on their 
origin country, demographics, point and date of entry11. describes 
the exact fields and how these sensitive data were handled securely.

2. Estimating Prevalence among Traveler Types
We estimate traveler-specific COVID-19 prevalence using recent test-
ing results from previous travelers through Eva. Prevalence estima-
tion entailed two steps: First, we leverage LASSO regression from 
high-dimensional statistics12 to adaptively extract a minimal set of 
discrete, interpretable traveler types based on their demographic 
features (country, region, age, gender); these types are updated on 
a weekly basis using recent testing results. Second, we use an empiri-
cal Bayes method to estimate each type’s prevalence daily. Empirical 
Bayes has previously been used in the epidemiological literature to 
estimate prevalence across many populations13,14. In our setting, COVID-
19 prevalence is generally low (e.g., ~2 in 1000), and arrival rates differ 
substantively across countries. Combined, these features cause our 
testing data to be both imbalanced (few positive cases among those 
tested) and sparse (few arrivals from certain countries). Our empirical 
Bayes method seamlessly handles both challenges. Estimation details 
are provided in Section 2.2 of Methods.

3. Allocating Scarce Tests
Leveraging these prevalence estimates, Eva targets a subset of travel-
ers for (group) PCR testing upon arrival based solely on their type, but 
no other personal information. The Greek National COVID-19 Com-
mittee of Experts approved group (Dorfman) testing15 in groups of 5 
but eschewed larger groups and rapid testing due to concerns over 
testing accuracy.

Eva’s targeting must respect various port-level budget and resource 
constraints that reflect Greece’s testing supply chain, which included 
400 health workers staffing 40 points of entry, 32 laboratories across 
the country, and delivery logistics for biological samples. These con-
straints were (exogenously) defined and adjusted throughout the sum-
mer by the General Secretariat of Public Health.

The testing allocation decision is entirely algorithmic and balances 
two objectives: First, given current information, Eva seeks to maximize 
the number of infected asymptomatic travelers identified (exploita-
tion). Second, Eva strategically allocates some tests to traveler types 
for which it does not currently have precise estimates in order to better 
learn their prevalence (exploration). This is a crucial feedback step. 
Today’s allocations will determine the available data in Step 2 above 
when determining future prevalence estimates. Hence, if Eva simply 
(greedily) sought to allocate tests to types that currently had high 
prevalence, then, in a few days, it would not have any recent testing 
data about many other types that had moderate prevalence. Since 
COVID-19 prevalence can spike quickly and unexpectedly, this would 
leave a “blind spot” for the algorithm and pose a serious public health 
risk. Such allocation problems can be formulated as multi-armed 

bandits16–19 – which are widely studied within the reinforcement 
learning literature – and have been used in numerous applications 
such as mobile health20, clinical trial design21, online advertising22, 
and recommender systems23.

Our application is a nonstationary24,25, contextual26, batched bandit 
problem with delayed feedback27,28 and constraints29. Although these 
features have been studied in isolation, their combination and practi-
cal implementation poses unique challenges. One such challenge is 
accounting for information from “pipeline” tests (allocated tests whose 
results have not yet been returned); we introduce a novel algorithmic 
technique of certainty-equivalent updates to model information we 
expect to receive from these tests, allowing us to effectively balance 
exploration and exploitation in nonstationary, batched settings. To 
improve interpretability, we build on the optimistic gittins index for 
multi-armed bandits;30 each type is associated with a deterministic 
index that represents its current “risk score”, incorporating both its 
estimated prevalence and uncertainty. Algorithm details are provided 
in Section 2.3 of Methods.

4. Grey-Listing Recommendations
Eva’s prevalence estimates are also used to recommend particularly 
risky countries to be grey-listed, in conjunction with the Greek COVID-
19 taskforce and the Presidency of the Government. Grey-listing a 
country entails a tradeoff: requiring a PCR test reduces the prevalence 
among incoming travelers, however, it also reduces non-essential 
travel significantly (approximately 39%, c.f. Sec. 3.2 of Methods), 
because of the relative difficulty/expense in obtaining PCR tests in 
summer 2020. Hence, Eva recommends grey-listing a country only 
when necessary to keep the daily flow of (uncaught) infected travel-
ers at a sufficiently low level to avoid overwhelming contact-tracing 
teams31. Ten countries were grey-listed over the summer of 2020 (see 
Sec. 4 of Methods).

Unlike testing decisions, our grey-listing decisions were not fully algo-
rithmic, but instead involved human input. Indeed, while in theory, one 
might determine an “optimal” cut-off for grey-listing to balance infected 
arrivals and reduced travel, in practice it is difficult to elicit such prefer-
ences from decision-makers directly. Rather, they preferred to retain 
some flexibility in grey-listing to consider other factors in their decisions.

5. Closing the Loop
Results from tests performed in Step 3 are logged within 24-48 hours, 
and then used to update the prevalence estimates in Step 2.

To give a sense of scale, during peak season (August and September), 
Eva processed 41,830 (±12,784) PLFs each day, and 16.7% (± 4.8%) of 
arriving households were tested each day.

Results
Value of Targeted Testing: Cases Identified
We first present the number of asymptomatic, infected travelers caught 
by Eva relative to random surveillance testing, i.e., where every arrival 
at a port of entry is equally likely to be tested. Random surveillance test-
ing was Greece’s initial proposal and is very common, partly because 
it requires no information infrastructure to implement. However, we 
find that such an approach comes at a significant cost to performance 
(and therefore public health).

We perform counterfactual analysis using inverse propensity weight-
ing (IPW)32,33, which provides a model-agnostic, unbiased estimate of 
the performance of random testing.

During the peak tourist season, we estimate that random surveillance 
testing would have identified 54.1% (±8.7%) of the infected travelers 
that Eva identified. (For anonymity, averages and standard deviations 
are scaled by a (fixed) constant, which we have taken without loss of 
generality to be the actual number of infections identified by Eva in 
the same period for ease of comparison.)
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In other words, to achieve the same effectiveness as Eva, random 
testing would have required 85% more tests at each point of entry, a 
substantive supply chain investment. In October, when arrival rates 
dropped, the relative performance of surveillance testing improved 
to 73.4% (±11.0%) (see Fig. 2). This difference is largely explained by 
the changing relative scarcity of testing resources (see Fig. 3). As 
arrivals dropped, the fraction of arrivals tested increased, thereby 
reducing the value of targeted testing. Said differently, Eva’s target-
ing is most effective when tests are scarce. In the extreme case of 
testing 100% of arrivals, targeted testing offers no value since both 
random and targeted testing policies test everyone. See Sec. 3.1 of 
Methods for details.

Value of Reinforcement Learning: Cases Identified
We now compare to policies that require similar infrastructure as Eva, 
namely PLF data, but instead target testing based on population-level 
epidemiological metrics (e.g., as proposed by the EU2) rather than 
reinforcement learning. The financial investments of such approaches 
are similar to those of Eva, and we show these policies identify fewer 
cases. (Sec. 3.2.3 of Methods highlights additional drawbacks of these 
policies, including poor data reliability and a mismatch in prevalence 
between the general population and asymptomatic traveler popula-
tion.)

We consider three separate policies that test passengers with prob-
ability proportional to either (i) cases per capita, (ii) deaths per capita, 
or (iii) positivity rates for the passenger’s country of origin4–6, while 
respecting port budgets and arrival constraints. We again use IPW to 
estimate counterfactual performance (see Fig. 4).

During the peak tourist season (August, September), we found that 
policies based on cases, deaths and positivity rates identified 69.0% 
(±9.4%), 72.7% (±10.6%), and 79.7% (±9.3%) respectively of the infected 
travelers that Eva identified per test. In other words, Eva identified 
1.25x – 1.45x more infections with the same testing budget and similar 
PLF infrastructure. In October, when arrival rates dropped, the relative 
performance of counterfactual policies based on cases, deaths and 
positivity rates improved to 91.5% (±11.7%), 88.8% (±10.5%) and 87.1% 
(±10.4%) respectively. Like our results in the previous section, we find 
that the value of smart targeting is larger when testing resources are 
scarcer. In fact, Eva’s relative improvement over these policies was 
highest in the second half of the peak season (when infection rates 
were much higher and testing resources were scarcer). See Sec. 3.2 of 
Methods for details.

Sec. 4 of Methods discusses possible reasons underlying the poor 
performance of simple policies based on population-level epidemio-
logical metrics, including reporting delays and systematic differences 
between the general and asymptomatic traveler populations.

Poor Predictive Power of Population-Level Epidemiological 
Metrics
Given the poor performance of simple policies based on 
population-level epidemiological metrics, a natural question is 
whether more sophisticated functions of these metrics would per-
form better. Although it is difficult to eliminate this possibility, we 
argue this is likely not the case by studying a related question: “To what 
extent can population-level epidemiological metrics be used to predict 
COVID-19 prevalence among asymptomatic travelers as measured by 
Eva?” To the best of our knowledge, this is the first study of this kind. 
Surprisingly, our findings suggest that widely used epidemiological 
data are generally ineffective in predicting the actual prevalence of 
COVID-19 among asymptomatic travelers (the group of interest for 
border control policies).

Specifically, we examine the extent to which these data can be used to 
classify a country as high-risk (more than 0.5% prevalence) or low-risk 
(less than 0.5% prevalence); such a classification informs whether a 
country should be grey- or black-listed. (A cutoff of 0.5% was typical for 

initiating grey-listing discussions with the Greek COVID-19 taskforce, 
but our results are qualitatively similar across a range of cutoffs.) We 
compute the true label for a country at each point in time based on Eva’s 
(real-time) estimates. We then train several models using a Gradient 
Boosted Machine (GBM)34 on different subsets of covariates derived 
from the 14-day time series of cases per capita, deaths per capita, test-
ing rates per capita, and testing positivity rates. Fig. 5 summarizes their 
predictive accuracy; we obtained similar results for other state-of-the 
art machine learning algorithms.

Note that a random model that uses no data has an AUROC of 0.5. 
Thus, Models 1-4 offer essentially no predictive value, suggesting that 
these population-level epidemiological data are not informative of 
prevalence among asymptomatic travelers.

Model 5, which additionally uses country-level fixed effects, 
offers some improvement. These fixed effects collectively model 
country-specific idiosyncrasies representing aspects of their testing 
strategies, social distancing protocols and other non-pharmaceutical 
interventions that are unobserved in the public, epidemiological data. 
The improvements of Model 5 suggests that these unobserved drivers 
are critical to distinguishing high- and low-risk countries.

Overall, this analysis not only raises concerns about travel protocols 
proposed by the EU2 based solely upon widely used epidemiological 
metrics, but also about any protocol that treats all countries sym-
metrically. Indeed, the idiosyncratic effects of Model 5 suggest that 
the thresholds for deciding whether COVID-19 prevalence in travelers 
from Country A is spiking may differ significantly from that of Country 
B. See Section 4.1 for details.

In Section 4.3 of Methods, we also study the information delay 
between a country’s publicly reported cases (the most common met-
ric) and prevalence among asymptomatic travelers from that country. 
We expect a lag because of the time taken for symptoms to manifest, 
and reporting delays induced by poor infrastructure. We find a modal 
delay of 9 days.

Value of Grey-Listing: Cases Prevented
Eva’s measurements of COVID-19 prevalence were also used to pro-
vide early warnings for high-risk regions, in response to which Greece 
adjusted travel protocols by grey-listing these nations. We estimate 
that Eva prevented an additional 6.7% (±1.2%) infected travelers from 
entering the country through its early grey-listing decisions in the 
peak season; results in the off-peak season are similar. For privacy, we 
have expressed the benefit relative to the number of infected travelers 
identified by Eva. See Sec. 5 of Methods for details.

Conclusions: Lessons Learned from Deployment and Design 
Principles
To the best of our knowledge, Eva was the first large-scale data-driven 
system that was designed and deployed during the COVID-19 crisis. 
Leading up to and throughout deployment, we met twice a week with 
the COVID-19 Executive Committee of Greece, an interdisciplinary 
team of scientists and policymakers. Through those meetings, we 
gleaned several lessons that shaped Eva’s design and contributed to 
its success.

Design the algorithm around data minimization. Data minimiza-
tion (i.e., requesting the minimum required information for a task), 
is a fundamental tenet of data privacy and the General Data Protec-
tion Regulation (GDPR). We met with lawyers, epidemiologists, and 
policymakers before designing the algorithm to determine what data 
and granularity may legally and ethically be solicited by the PLF. Data 
minimization naturally entails a tradeoff between privacy and effective-
ness. We limited requests to features thought to be predictive based 
on best available research at the time (origin, age and gender35,36), but 
omitted potentially informative but invasive features (e.g., occupation). 
We further designed our empirical Bayes estimation strategy around 
these data limitations.
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Prioritize interpretability. For all parties to evaluate and trust the 
recommendations of a system, the system must provide transparent 
reasoning. An example from our deployment was the need to com-
municate the rationale for “exploration” tests, i.e., tests for types with 
moderate but very uncertain prevalence estimates). Such tests may 
seem wasteful. Our choice of empirical Bayes allowed us to easily com-
municate that types with large confidence intervals may have signifi-
cantly higher risk than their point estimate suggests, and thus require 
some tests to resolve uncertainty; see, e.g., Figs. 9 and 11 in Methods, 
which were featured on policymakers’ dashboards.

A second example was our choice to use gittins indices, which provide 
a simple, deterministic risk metric for each type that incorporates both 
estimated prevalence and corresponding uncertainty, driving intuitive 
test allocations. In contrast, using UCB or Thompson Sampling with 
logistic regression37,38 would have made it more difficult to visualize 
uncertainty (a high-dimensional ellipsoid or posterior distribution) and 
test allocations would depend on this uncertainty through an opaque 
computation (a high-dimensional projection or stochastic sampling).

This transparency fostered trust across ministries of the Greek Gov-
ernment using our estimates to inform downstream policy making, 
including targeting contact-tracing teams, staffing of mobile testing 
units, and adjusting social distancing measures.

Design for flexibility. Finally, since these systems require substantial 
financial and technical investment, they need to be flexible to accom-
modate unexpected changes. We designed Eva in a modular manner 
disassociating type extraction, estimation, and test allocation. Conse-
quently, one module can easily be updated without altering the remain-
ing modules. For example, had vaccine distribution begun summer 
2020, we could define new types based on passengers’ vaccination 
status without altering our procedure for prevalence estimates or test 
allocation. Similarly, if rapid testing were approved, our allocation 
mechanism could be updated to neglect delayed feedback without 
affecting other components. This flexibility promotes longevity, since 
it is easier to get stakeholder buy-in for small adjustments to an existing 
system than for a substantively new approach.
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Fig. 1 | Eva: A Reinforcement Learning System for COVID-19 Testing. 
Arriving passengers submit travel and demographic information 24 hours 
prior to arrival. Based on these data and testing results from previous 
passengers, Eva selects a subset of passengers to test. Selected passengers 

self-isolate for 24-48 hours while labs process samples. Positive passengers are 
then quarantined and contact tracing begins; negative passengers resume 
normal activities. Results are used to update Eva to improve future testing and 
maintain high-quality estimates of prevalence across traveler subpopulations.
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Fig. 2 | Comparing Eva vs. Randomized Surveillance Testing. Infections 
caught by Eva (red) vs estimated number of cases caught by random, 
surveillance testing (teal). The peak (resp. off-peak) season is Aug. 6 to Oct. 1 
(resp. Oct. 1 to Nov. 1) and is denoted with triangular (resp. circular) markers. 
Seasons are separated by the dotted line. Solid lines denote cubic-spline 
smoothing with 95% confidence intervals in grey.
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Fig. 3 | Relative Efficacy of Eva over Random Surveillance vs. Testing 
Budget. Ratio of number of infections caught by Eva relative to number of 
(estimated) infections caught by random surveillance testing, as a function of 
the fraction of tested travelers. Dotted (resp. dashed) line indicates the average 
fraction tested during the peak (resp. off-peak) tourist season. Triangular 
(circular) markers denote estimates from peak (off-peak) days. Solid blue line 
denotes cubic-spline smoothing with a 95% confidence interval in grey.
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Fig. 4 | Comparing Eva to Policies based on Epidemiological Metrics. Lines 
represent cubic-spline smoothing of daily infections caught for each policy; 
raw points only shown for Eva and the “Cases” policy for clarity. The dotted line 
separates the peak (Aug. 6 to Oct. 1) and off-peak (Oct. 1 to Nov. 1) tourist 
seasons.
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Fig. 5 | Predictive Power of Publicly Reported Epidemiological Metrics. 
Each of Models 1-4 uses a different subset of features from: 14-day time series of 
cases per capita, deaths per capita, tests performed per capita, and testing 
positivity rate. Model 5 additionally includes country fixed-effects to model 
country-level idiosyncratic behavior. Models 1-4 are essentially no better than 
random prediction, while Model 5 achieves slightly better performance. See 
Sec. 4.1 of Methods for details on model construction and features used in each 
model.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
To support further research, aggregated, anonymized data are available 
at https://github.com/kimondr/EVA_Public_Data. These data aggregate 
passenger arrival and testing information over pairs of consecutive days, 
country of origin, and point of entry. The finer granularity data that sup-
port the (exact) findings of this study are protected by GDPR. These data 
are available from the Greek Ministry of Civil Protection but restrictions 
apply to the availability of these data, which were used under license for 
the current study, and so are not publicly available. Access to these data 
can only be granted by the Greek Ministry of Civil Protection (info@gscp.
gr) for research that is conducted in the public interest for public health 
(GDPR Recital 159) and scientific purposes (GDPR Article 89). Finally, the 
population-level epidemiological metrics used in our analysis can be 
obtained freely from the “Our World In Data COVID-19 dataset (https://
github.com/owid/covid-19-data/tree/master/public/data).

Code availability
All code used in this paper was written in a combination of R and 
Python 3.7 The code for the deployment of the algorithm on a sample 

dataset is available at https://github.com/vgupta1/EvaTargetedCovid-
19Testing. The code for reproducing the results of our counterfactual 
analysis is available at https://github.com/vgupta1/Eva_Counterfac-
tualAnalysis.
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