Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding

Subjects

Abstract

Metal–metal bonding is a widely studied area of chemistry1,2,3, and has become a mature field spanning numerous d transition metal and main group complexes4,5,6,7. By contrast, actinide–actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6–7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium–thorium bonds in frozen matrices have produced only ThHn (n = 1–4)14. Thus, there are no isolable actinide–actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide–actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium–thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide–actinide bonding.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Synthesis and structure of 3.
Fig. 2: Characterization data for 3.

Data availability

X-ray data are available free of charge from the Cambridge Crystallographic Data Centre under reference 2061981. Methods (general considerations, starting materials, experimental, crystallographic, spectroscopic, magnetic, computational data and refs. 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), Extended Data Figs. 19, Extended Data Tables 1,2 and Supplementary Tables 17) can be found online. All other data are available from S.T.L. on reasonable request.

References

  1. 1.

    Cotton, F. A., Murillo, C. A. & Walton, R. A. (eds) Multiple bonds between metal atoms 3rd edn (Springer-Verlag, 2005).

  2. 2.

    Parkin, G. (ed.) Metal-metal bonding (Springer-Verlag, 2010).

  3. 3.

    Liddle, S. T. (ed.) Molecular metal-metal bonds: compounds, synthesis, properties (Wiley-VCH, 2015).

  4. 4.

    Wagner, F. R., Noor, A. & Kempe, R. Ultrashort metal–metal distances and extreme bond orders. Nat. Chem. 1, 529–536 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Jones, C. Dimeric magnesium(I) β-diketiminates: a new class of quasi-universal reducing agent. Nat. Rev. Chem. 1, 0059 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Popov, I. A., Starikova, A. A., Steglenko, D. V. & Boldyrev, A. I. Usefulness of the σ‐aromaticity and σ‐antiaromaticity concepts for clusters and solid‐state compounds. Chem. Eur. J. 24, 292–305 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Chipman, J. A. & Berry, J. F. Paramagnetic metal–metal bonded heterometallic complexes. Chem. Rev. 120, 2409–2447 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Cavigliasso, G. & Kaltsoyannis, N. On the paucity of molecular actinide complexes with unsupported metal−metal bonds:  a comparative investigation of the electronic structure and metal−metal bonding in U2X6 (X = Cl, F, OH, NH2, CH3) complexes and d-block analogues. Inorg. Chem. 45, 6828–6839 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Gorokhov, L. N., Emelyanov, A. M. & Khodeev, Y. S. Mass-spectroscopic investigation of stability of gaseous U2O2 and U2. High Temp. 12, 1307–1309 (1974).

    CAS  Google Scholar 

  10. 10.

    Steimle, T., Kokkin, D. L., Muscarella, S. & Ma, T. Detection of the thorium dimer via two-dimensional fluorescence spectroscopy. J. Phys. Chem. A 119, 9281–9285 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Souter, P. F., Kushto, G. P. & Andrews, L. IR spectra of uranium hydride molecules isolated in solid argon. Chem. Commun. 2401–2402 (1996).

  12. 12.

    Souter, P. F., Kushto, G. P., Andrews, L. & Neurock, M. Experimental and theoretical evidence for the formation of several uranium hydride molecules. J. Am. Chem. Soc. 119, 1682–1687 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    Zhang, X. et al. U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J. Am. Chem. Soc. 140, 3907–3915 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Souter, P. F., Kushto, G. P., Andrews, L. & Neurock, M. Experimental and theoretical evidence for the isolation of thorium hydride molecules in argon matrices. J. Phys. Chem. A 101, 1287–1291 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    Knecht, S., Jensen, H. J. A. & Saue, T. Relativistic quantum chemical calculations show that the uranium molecule U2 has a quadruple bond. Nat. Chem. 11, 40–44 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. von R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Tsipis, C. A. Aromaticity/antiaromaticity in “bare” and “ligand-stabilized” rings of metal atoms. Struct. Bond. 136, 217–274 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Boronski, J. T., Wooles, A. J. & Liddle, S. T. Heteroleptic actinocenes: a thorium(IV)–cyclobutadienyl–cyclooctatetraenyl–di-potassium-cyclooctatetraenyl complex. Chem. Sci. 11, 6789–6794 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Le Vanda, C., Solar, J. P. & Streitwieser, A. Half-sandwich cyclooctatetraenethorium compounds. J. Am. Chem. Soc. 102, 2128–2136 (1980).

    Article  Google Scholar 

  20. 20.

    Parry, J. S., Cloke, F. G. N., Coles, S. J. & Hursthouse, M. B. Synthesis and characterization of the first sandwich complex of trivalent thorium:  a structural comparison with the uranium analogue. J. Am. Chem. Soc. 121, 6867–6871 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    Avdeef, A., Raymond, K. N., Hodgson, K. O. & Zalkin, A. Two isostructural actinide π complexes. Crystal and molecular structure of bis(cyclooctatetraenyl)uranium(IV), U(C8H8)2, and bis(cyclooctatetraenyl)thorium(IV), Th(C8H8)2. Inorg. Chem. 11, 1083–1088 (1972).

    CAS  Article  Google Scholar 

  22. 22.

    Ortu, F., Formanuik, A., Innes, J. R. & Mills, D. P. New vistas in the molecular chemistry of thorium: low oxidation state complexes. Dalton Trans. 45, 7537–7549 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Evans, W. J. Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics 35, 3088–3100 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Huh, D. N., Roy, S., Ziller, J. W., Furche, F. & Evans, W. J. Isolation of a square-planar Th(III) complex: synthesis and structure of [Th(OC6H2tBu2-2,6-Me-4)4]1–. J. Am. Chem. Soc. 141, 12458–12463 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Old, J., Danopoulos, A. & Winston, S. Uranium complexes with dianionic O-methylated calix[4]arene ligands. New J. Chem. 27, 672–674 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    Evans, W. J., Miller, K. A., Ziller, J. W. & Greaves, J. Analysis of uranium azide and nitride complexes by atmospheric pressure chemical ionization mass spectrometry. Inorg. Chem. 46, 8008–8018 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Larch, C. P., Cloke, F. G. N. & Hitchcock, P. B. Activation and reduction of diethyl ether by low valent uranium: formation of the trimetallic, mixed valence uranium oxo species [U(CpRR′)(μ-I)2]33-O) (CpRR′ = C5Me5, C5Me4H, C5H4SiMe3). Chem. Commun. 82–84 (2008).

  29. 29.

    Boronski, J. T., Doyle, L. R., Wooles, A. J., Seed, J. A. & Liddle, S. T. Synthesis and characterization of an oxo-centered homotrimetallic uranium(IV)–cyclobutadienyl dianion complex. Organometallics 39, 1824–1831 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    Zhang, C., Hou, G., Zi, G., Ding, W. & Walter, M. D. An alkali-metal halide-bridged actinide phosphinidiide complex. Inorg. Chem. 58, 1571–1590 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  31. 31.

    Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Expanding thorium hydride chemistry through Th2+, including the synthesis of a mixed-valent Th4+/Th3+ hydride complex. J. Am. Chem. Soc. 138, 4036–4045 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Clark, D. L., Grumbine, S. K., Scott, B. L. & Watkin, J. G. Unique molecular structure of the actinide hydrido aryloxide complex Th3(μ3-H)2(μ2-H)4(O-2,6-t-Bu2C6H3)6. J. Am. Chem. Soc. 117, 9089–9090 (1995).

    CAS  Article  Google Scholar 

  33. 33.

    Blanchard, S. et al. Synthesis of triangular tripalladium cations as noble‐metal analogues of the cyclopropenyl cation. Angew. Chem. Int. Ed. 53, 1987–1991 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    King, R. B. Metal cluster topology. 21. Sigma aromaticity in triangular metal carbonyl clusters. Inorg. Chim. Acta 350, 126–130 (2003).

    CAS  Google Scholar 

  35. 35.

    Liddle, S. T. The renaissance of non-aqueous uranium chemistry Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    CrysAlisPRO version 39.46 (Rigaku Oxford Diffraction Ltd, 2018).

  37. 37.

    Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. Sect. A 71, 3–8 (2015).

    MATH  Article  CAS  Google Scholar 

  38. 38.

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 71, 3–8 (2015).

    MATH  Article  CAS  Google Scholar 

  39. 39.

    Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849–854 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Persistence of Vision (TM) Raytracer (Persistence of Vision Pty. Ltd, 2004).

  42. 42.

    Day, B. M. et al. Rare‐earth cyclobutadienyl sandwich complexes: synthesis, structure and dynamic magnetic properties. Chem. Eur. J. 24, 16779–16782 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Jolivet, J. P., Thomas, Y., Taravel, B., Lorenzelli, V. & Busca, G. Infrared spectra of cerium and thorium pentacarbonate complexes. J. Mol. Struc. 79, 403–408 (1982).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Karyakin, A. V. & Volynets, M. P. Infrared spectra of thorium-carbonate complex salts. J. Struct. Chem. 3, 689–690 (1962).

    Article  Google Scholar 

  45. 45.

    Clavier, N. et al. X-ray diffraction and μ-Raman investigation of the monoclinic-orthorhombic phase transition in Th1-xUx(C2O4)2·2H2O solid solutions. Inorg. Chem. 49, 1921–1931 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Kot, W. K., Shalimoff, G. V., Edelstein, N. M. Edelman, M. A. & Lappert, M. F. [Th(III)[η5-C5H3(SiMe3)2]3], an actinide compound with a 6d1 ground state. J. Am. Chem. Soc. 110, 986–987 (1988).

    CAS  Article  Google Scholar 

  47. 47.

    Blake, P. C. et al. Synthesis, properties and structures of the tris(cyclopentadienyl)thorium(III) complexes [Th{η5-C5H3(SiMe2R)2-1,3}3] (R=Me or tBu). J. Organomet. Chem. 636, 124–129 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    Siladke, N. A. et al. Actinide metallocene hydride chemistry: C–H activation in tetramethylcyclopentadienyl ligands to form [μ-η5-C5Me3H(CH2)-κC]2– tuck-over ligands in a tetrathorium octahydride complex. Organometallics 32, 6522–6531 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Wedal, J. C., Bekoe, S., Ziller, J. W., Furche, F. & Evans, W. J. In search of tris(trimethylsilylcyclopentadienyl) thorium. Dalton Trans. 48, 16633–16640 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Alessi, A., Agnello, S., Buscarino, G., Pan, Y. & Mashkovtsev, R. I. in Applications of EPR in Radiation Research (eds Lund, A., Shiotani, M.) 255–295 (Springer International Publishing, 2014).

  51. 51.

    Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  52. 52.

    Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    ADS  CAS  Article  Google Scholar 

  53. 53.

    Küchle, W., Dolg, M., Stoll, H. & Preuss, H. J. Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).

    ADS  Article  Google Scholar 

  54. 54.

    Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203–209 (2004).

    CAS  Article  Google Scholar 

  55. 55.

    Cao, X., Dolg, M. & Stoll, H. J. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–496 (2003).

    ADS  CAS  Article  Google Scholar 

  56. 56.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  57. 57.

    Becke, A. D. & Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys. 123, 154101 (2005).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. 58.

    Johnson, E. R. & Becke, A. D. A post-Hartree–Fock model of intermolecular interactions. J. Chem. Phys. 123, 024101 (2005).

    ADS  Article  CAS  Google Scholar 

  59. 59.

    Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 124, 174104 (2006)

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  60. 60.

    Keith, T. A. AIMAll 19.10.12 (TK Gristmill Software, 2019).

  61. 61.

    Te Velde, G. et al. Chemistry with ADF. J. Comp. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  62. 62.

    ADF 2012.1 (SCM, Theoretical Chemistry, Vrije Universiteit, 2012).

  63. 63.

    Tsipis, A. C., Kefalidis, C. E. & Tsipis, C. A. The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters. J. Am. Chem. Soc. 130, 9144–9155 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Bursten, B. E. & Ozin, G. A. Xα-SW calculations for naked actinide dimers: existence of ϕ bonds between metal atoms. Inorg. Chem. 23, 2910–2911 (1984).

    CAS  Article  Google Scholar 

  65. 65.

    Pepper, M. & Bursten, B. E. Ab initio studies of the electronic structure of the diuranium molecule. J. Am. Chem. Soc. 112, 7803–7804 (1990).

    CAS  Article  Google Scholar 

  66. 66.

    Cayton, R. H., Novo-Gradac, K. J. & Bursten, B. E. Metal-metal bonds involving the f elements. 4. Molecular orbital studies of metal-metal and metal-ligand interactions in dinuclear uranium(V) systems. Inorg. Chem. 30, 2265–2272 (1991).

    CAS  Article  Google Scholar 

  67. 67.

    Gagliardi, L. & Roos, B. O. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature 433, 848–851 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Gagliardi, L., Pyykkö, P. & Roos, B. O. A very short uranium–uranium bond: the predicted metastable U22+. Phys. Chem. Chem. Phys. 7, 2415–2417 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Straka, M. & Pyykkö, P. Linear HThThH:  a candidate for a Th−Th triple bond. J. Am. Chem. Soc. 127, 13090–13091 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Roos, B. O. & Gagliardi, L. Quantum chemistry predicts multiply bonded diuranium compounds to be stable. Inorg. Chem. 45, 803–807 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Cavigliasso, G. & Kaltsoyannis, N. Metal–metal bonding in molecular actinide compounds: electronic structure of [M2X8]2− (M = U, Np, Pu; X = Cl, Br, I) complexes and comparison with d-block analogues. Dalton Trans. 5476–5483 (2006).

  72. 72.

    La Macchia, G., Brynda, M. & Gagliardi, L. Quantum chemical calculations predict the diphenyl diuranium compound [PhUUPh] to have a stable 1Ag ground state. Angew. Chem. Int. Ed. 45, 6210–6213 (2006).

    Article  CAS  Google Scholar 

  73. 73.

    Roos, B. O., Malmqvist, P.-Å. & Gagliardi, L. Exploring the actinide−actinide bond:  theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2. J. Am. Chem. Soc. 128, 17000–17006 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Roos, B. O., Borin, A. C. & Gagliardi, L. Reaching the maximum multiplicity of the covalent chemical bond. Angew. Chem. Int. Ed. 46, 1469–1472 (2007).

    CAS  Article  Google Scholar 

  75. 75.

    Wu, X. & Lu, X. Dimetalloendofullerene U2@C60 has a U−U multiple bond consisting of sixfold one-electron-two-center bonds. J. Am. Chem. Soc. 129, 2171–2177 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Cavigliasso, G. & Kaltsoyannis, N. Energy decomposition analysis of metal−metal bonding in [M2X8]2- (X = Cl, Br) complexes of 5f (U, Np, Pu), 5d (W, Re, Os), and 4d (Mo, Tc, Ru) elements. Inorg. Chem. 46, 3557–3565 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Raab, J., Lindh, R. H., Wang, X., Andrews, L. & Gagliardi, L. A combined experimental and theoretical study of uranium polyhydrides with new evidence for the large complex UH4(H2)6. J. Phys. Chem. A 111, 6383–6387 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Zhou, J., Sonnenberg, J. L. & Schlegel, H. B. Theoretical Studies of AnII2(C8H8)2 (An = Th, Pa, U, and Np) complexes: the search for double-stuffed actinide metallocenes. Inorg. Chem. 49, 6545–6551 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Manni, G. L. et al. Assessing metal–metal multiple bonds in Cr-Cr, Mo-Mo, and W-W Compounds and a hypothetical U-U compound: a quantum chemical study comparing DFT and multireference methods. Chem. Eur. J. 18, 1737–1749 (2012).

    Article  CAS  Google Scholar 

  80. 80.

    Dai, X. et al. Energetics and electronic properties of a neutral diuranium molecule encapsulated in C90 fullerene. Procedia Chem. 7, 528–533 (2012).

    CAS  Article  Google Scholar 

  81. 81.

    Penchoff, D. A. & Bursten, B. E. Metal–metal bonding in the actinide elements: onceptual synthesis of a pure two-electron U–U fδ single bond in a constrained geometry of U2(OH)10. Inorg. Chim. Acta 424, 267–273 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    Su, D.-M., Zheng, X.-J., Schreckenbach, G. & Pan, Q.-J. Highly diverse bonding between two U3+ ions when ligated by a flexible polypyrrolic macrocycle. Organometallics 34, 5225–5232 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    Wang, C.-Z. et al. Actinide (An = Th–Pu) dimetallocenes: promising candidates for metal–metal multiple bonds. Dalton Trans. 44, 17045–17053 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Foroutan-Nejad, C. et al. Bonding in U2@C80: cage-driven metal–metal bonds in di-uranium fullerenes. Phys. Chem. Chem. Phys. 17, 24182–24192 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Qu, N., Su, D.-M., Wu, Q.-Y., Shi, W.-Q. & Pan, Q.-J. Metal-metal multiple bond in low-valent diuranium porphyrazines and its correlation with metal oxidation state: a relativistic DFT study. Comp. Theo. Chem. 1108, 29-39 (2017).

    CAS  Article  Google Scholar 

  86. 86.

    Hu, H.-S. & Kaltsoyannis, N. The shortest Th–Th distance from a new type of quadruple bond. Phys. Chem. Chem. Phys. 19, 5070–5076 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  87. 87.

    Ge, X., Dai, X., Zhou, H., Yang, Z. & Zhou, R. Stabilization of open-shell single bonds within endohedral metallofullerene. Inorg. Chem. 59, 3606–3618 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Jaroš, A., Foroutan-Nejad, C. & Straka, M. From π bonds without σ bonds to the longest metal–metal bond ever: a survey on actinide–actinide bonding in fullerenes. Inorg. Chem. 59, 12608–12615 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding and support from the UK Engineering and Physical Sciences Research Council (grants EP/K024000/1, EP/M027015/1, EP/P001386/1, EP/S033181/1 and EP/T011289/1), Natural Environment Research Council (grant NE/R011230/1) European Research Council (grant CoG612724), Royal Society (grant UF110005), Deutsche Forschungsgemeinschaft (SL104/10-1), the Landesgraduiertenförderung of the State of Baden-Württemberg and The University of Manchester (including computational resources and associated support services of the Computational Shared Facility). We also thank M. Jennings (Micro Analytical Laboratory, University of Manchester) for performing elemental microanalyses. S.T.L. thanks the Alexander von Humboldt Foundation for a Friedrich Wilhelm Bessel Research Award.

Author information

Affiliations

Authors

Contributions

J.T.B. prepared and characterized the complexes. J.A.S., D.H. and J.v.S. recorded and interpreted the magnetic and EPR data. A.W.W. and L.N. collected and analysed the solid-state UV–Vis data. A.J.W. collected, solved and refined all of the crystallographic data. N.K. performed and analysed the calculations. S.T.L. assisted with data analysis and directed the research. J.T.B., N.K. and S.T.L. wrote the manuscript with input from all of the authors.

Corresponding authors

Correspondence to Nikolas Kaltsoyannis or Stephen T. Liddle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Pekka Pyykkö and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spectroscopic and structural data for 3.

a, 1H NMR spectrum in C6D6 of a crude reaction mixture producing 3 showing unreacted 1 and the {C4(SiMe3)4} by-product. b, Polymeric structure of 3 at 150 K with 30% probability ellipsoids. H-atoms and disorder components omitted for clarity. Key: Th, green; K, dark blue; Cl, violet-red; O, red; C, grey. c, ATR-IR spectrum of 3 prepared in benzene. d, ATR-IR spectrum of 3 prepared in D6-benzene. e, 1H NMR spectrum of 3 in C6D6 after treatment with CCl4. Resonances at 2.15 and ~7.00-7.40 ppm correspond to residual toluene. f, 13C{1H} NMR spectrum of 3 in C6D6 after treatment with CCl4.

Extended Data Fig. 2 The two principal, colour-determining absorptions for 3".

Both transitions originate from the HOMO (MO 199) orbital. Hydrogen atoms are omitted for clarity.

Extended Data Fig. 3 Solid-state UV–Vis spectra of 3.

a, comparison of experimental spectrum (black) to the TD-DFT predicted spectrum presented as oscillator strengths (vertical red lines). b, comparison of the experimental spectrum before (black) and after (red) being allowed to oxidise in air.

Extended Data Fig. 4 NICSzz of 3" evaluated at intervals of R = 0.1 Å.

R is the perpendicular distance from the centre of the Th3 ring and the plane of the Cl ligands is at R = ±1.8 Å.

Extended Data Fig. 5 Vibrations of 3" with Th-Th character.

a, at 70.8 cm−1. b, at 71.0 cm−1. c, at 77.2 cm−1. d, at 107.4 cm−1. H-atoms are omitted for clarity.

Extended Data Fig. 6 Magnetic and EPR Data for 3.

a, Raw magnetic moment recorded by variable-temperature SQUID magnetometry on a flame sealed borosilicate tube containing a sample of 3 in a 1T field with the data for a blank tube subtracted. b, Molar paramagnetic susceptibility χ per Th3 unit recorded by variable-temperature SQUID magnetometry (black symbols). Expected curves for a d1 (S = ½) system with g = 2 (blue,) for a non-correlated d1-d1 (2 × S = ½) system, also with g = 2 (red), and for a triplet d1-d1 (S = 1) system (green). c, X-Band EPR spectra recorded on powdered 3 in a flame-sealed quartz tube at different temperatures as indicated. d, Room temperature X-Band EPR spectra recorded on a loose powder of 3 in a flame-sealed quartz tube. Simulation of the EPR spectrum assuming two species in a 20:80 ratio with principal g-tensor values of gx1 = 1.9965, gy1 = 2.0036, gz1 = 2.010, and gx2 = 1.9375, gy2 = 1.9762, gz2 = 1.9747, respectively.

Extended Data Fig. 7 NMR spectroscopic data for the treatment of thorocene and 2 with CO2.

a, 1H NMR spectrum in C6D6 of thorocene after treatment with excess CO2, recorded after 2 h. b, 1H NMR spectrum in C6D6 of 2 after treatment with excess CO2, recorded after 2 h.

Extended Data Fig. 8 NMR and IR spectroscopic data for the reaction of 3 with CO2.

a, 1H NMR spectrum in C6D6 of the mother liquor after 3 is treated with excess CO2. Trace toluene resonances are from the preparation of 3. b, 13C{1H} NMR spectrum in C6D6 of the mother liquor after 3 is treated with excess CO2. The use of an excess of CO2 is reflected by the small resonance for CO2. c, IR spectrum of the product of the reaction of 3 with excess CO2 with key absorptions at 1540 and 1371 cm−1 indicative of carbonate and not oxalate formation.

Extended Data Fig. 9 NMR spectroscopic data for the reaction of 3 with C8H8.

a, 1H NMR spectrum in C6D6 of the mother liquor after sonicating and heating 3 with C8H8. b, 13C{1H} NMR spectrum in C6D6 of the mother liquor after sonicating and heating 3 with C8H8.

Extended Data Table 1 Key Computed Metrical Data (Å) for Alternative Model Formulations of 3a
Extended Data Table 2 Calculated adsorptions for 3 with Oscillator Strength f Above 0.01 (Singlet-Singlet Transitions from Ground State)

Supplementary information

Supplementary Table 1

Final single point energy and coordinates for geometry optimized 3'.

Supplementary Table 2

Final single point energy and coordinates for geometry optimized 3"

Supplementary Table 3

Final single point energy and coordinates for geometry optimized [{Th(η8-C8H8)(μ3-Cl)2}3K2]2+.

Supplementary Table 4

Final single point energy and coordinates for geometry optimized [{Th(η8-C8H8)(μ3-Cl)2}3].

Supplementary Table 5

Final single point energy and coordinates for geometry optimized [{Th(η8-C8H8)(μ3-Cl)2}3H].

Supplementary Table 6

Final single point energy and coordinates for geometry optimized [{Th(η8-C8H8)(μ3-Cl)2}3K2H]+.

Supplementary Table 7

Final single point energy and coordinates for geometry optimized [{Th(η8-C8H8)(μ3-Cl)2}3K2H].

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boronski, J.T., Seed, J.A., Hunger, D. et al. A crystalline tri-thorium cluster with σ-aromatic metal–metal bonding. Nature 598, 72–75 (2021). https://doi.org/10.1038/s41586-021-03888-3

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing