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            Abstract
Although solid-state lithium (Li)-metal batteries promise both high energy density and safety, existing solid ion conductors fail to satisfy the rigorous requirements of battery operations. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact with electrodes. Conversely, polymer ion conductors that are Li-metal-stable usually provide better interfacial compatibility and mechanical tolerance, but typically suffer from inferior ionic conductivity owing to the coupling of the ion transport with the motion of the polymer chains1,2,3. Here we report a general strategy for achieving high-performance solid polymer ion conductors by engineering of molecular channels. Through the coordination of copper ions (Cu2+) with one-dimensional cellulose nanofibrils, we show that the opening of molecular channels within the normally ion-insulating cellulose enables rapid transport of Li+ ions along the polymer chains. In addition to high Li+ conductivity (1.5Â Ã—Â 10âˆ’3 siemens per centimetre at room temperatureÂ along the molecular chainÂ direction), the Cu2+-coordinated cellulose ion conductor also exhibits a high transference number (0.78, compared with 0.2â€“0.5 in other polymers2) and a wide window of electrochemical stability (0â€“4.5 volts) that can accommodate both the Li-metal anode and high-voltage cathodes. This one-dimensional ion conductor also allows ion percolation in thick LiFePO4 solid-state cathodes for application in batteries with a high energy density. Furthermore, we have verified the universality of this molecular-channel engineering approach with other polymers and cations, achieving similarly high conductivities, with implications that could go beyond safe, high-performance solid-state batteries.
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                    Fig. 1: Structure and ion-transport performance of the Liâ€“Cuâ€“CNF solid-state ion conductor.[image: ]


Fig. 2: Structural evolution during the synthesis of Liâ€“Cuâ€“CNF.[image: ]


Fig. 3: Li+ conductivity and transport mechanism in Liâ€“Cuâ€“CNF.[image: ]


Fig. 4: Demonstration of solid-state Li metal batteries using the Liâ€“Cuâ€“CNF ion conductor.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Structural characterization during the synthesis of Liâ€“Cuâ€“CNF.
aâ€“d, Fibre XRD patterns of the CNFs (in the format of densified wood for high-resolution diffraction patterns) after the following treatment steps. a, Cuâ€“CNFâ€“NaOH obtained from Cu2+-saturated NaOH aqueous solution. Peaks are indexed on the basis of the literature23. The (003) reflection is observed with a spacing of 0.51Â nm, while the (001) and (002) reflections are absent, indicating that the Cuâ€“CNFâ€“NaOH features a threefold symmetric structure along the direction of the cellulose molecular chain. b, Cuâ€“CNF washed with water to remove NaOH, demonstrating an amorphous structure. c, Cuâ€“CNF after removing water by DMF exchange and evaporating DMF. The fibre XRD pattern shows a mostly amorphous structure with a small angle peak at roughly 2Â nm corresponding to cellulose II22, possibly because of a small number of cellulose chains without coordinated Cu that form cellulose II after NaOH is removed. A high q peak at roughly 0.4Â nm in the equatorial direction indicates the average molecular chain-to-chain distance of cellulose II. The green arrow in the meridian direction shows a peak corresponding to 0.47Â nm in real space. The yellow arrows are pointing to peaks indicating the repeating unit of the Cuâ€“CNF is roughly 1Â nm along the cellulose chain. The 0.47Â nm and 1Â nm repeating distances are absent in all known cellulose structures, and therefore we attribute them to the unique structure of the Cuâ€“CNF. d, Liâ€“Cuâ€“CNF after inserting Li+ in Cuâ€“CNF and evaporating the solvent. The amorphous cellulose structure is maintained with some weak diffraction peaks of cellulose II. The yellow and green arrows indicate the same peaks as in c. eâ€“h, XAS analysis of the Cuâ€“CNF and Liâ€“Cuâ€“CNF samples. e, f, Cu K-edge X-ray absorption near edge structure (XANES) spectra of: e, Cuâ€“CNF, Liâ€“Cuâ€“CNF and a CuO standard; f, Cu2O and Cu standard samples. The green dashed line shows the calculated XANES spectrum of Liâ€“Cuâ€“CNF, in good agreement with the experimentally measured spectrum. Cuâ€“CNF and Liâ€“Cuâ€“CNF show similar yet broadened pre-edge peaks to CuO at 8,986Â eV (1sÂ â†’Â 3d transition), without the characteristic peaks of Cu2O or Cu metal, indicating that the Cu ions in Cuâ€“CNF and Liâ€“Cuâ€“CNF are of +2 valency. g, h, Fourier-transformed Cu K-edge extended X-ray absorption fine structure (EXAFS) spectra of: g, Cuâ€“CNF; h, Liâ€“Cuâ€“CNF. On the basis of the EXAFS spectra, in Cuâ€“CNF and Liâ€“Cuâ€“CNF, the Cu2+ are bonded with O atoms with an average bonding distance of 1.97Â Ã…, consistent with that in reported Cuâ€“organic complexes48, indicating that the Cu2+ is coordinated with the hydroxyl groups of the cellulose molecules.


Extended Data Fig. 2 DFT calculations and MD simulations of the Liâ€“Cuâ€“CNF structure.
a, Assigned COMPASS II force-field types and atomic charges in typical cellulose units for MD simulations. b, Optimized atomic structures of the representative systems of Liâ€“Cuâ€“CNF used to evaluate interactions between Li+ and different oxygen-containing functional groups and water molecules, and corresponding energyâ€“distance relationships for different Li+-bonding environments given by molecular mechanics calculations using COMPASS II FF and DFT calculations. The difference between the total system energy at rÂ =Â 10.0Â Ã… and the minimum energy is taken as the Li+-dissociation energy. The Li+ is strongly bonded with both anionic COOâˆ’ and ROâˆ’ groups with dissociation energies of more than 5.0Â eV. The dissociation energy of the Li+ is roughly 3.0Â eV for ROH and EO groups, and 1.5Â eV for H2O molecules. The strong interactions between the Li+ and one or two oxygen species in cellulose suggest slow Li+ movements in the absence of multiple Liâ€“O coordination. In the H2O molecule, the O atom has an atom type of o2* and charge of âˆ’0.82Â e, while the H atom has an atom type of h1o and a charge of +0.41Â e for force-field calculations. c, To simulate Cu2+ coordination in cellulose, we optimized the atomic structure of two AGUs connected by one Cu2+ (Cuâ€“(AGU)2 system) to serve as a structural building block. Two H atoms are deprotonated by the Cu. The average optimized Cuâ€“O bond length (1.96Â Ã…) is close to that observed in the experiment (1.97Â Ã…), and the calculated XANES of the Cuâ€“(AGU)2 system is also in good agreement with the experimental measurement (Extended Data Fig. 1e), showing that our computational model for the structure of the Cuâ€“O complex is reasonable. Atom types and atomic charges in force-field calculations are given for Cu and its connected O atoms, which are categorized as ROH for statistics (Fig. 3d in the main text). d, Top view of a 2Â Ã—Â 2 supercell of the periodic Cu-coordinated CNF structure as a starting structure for the simulation, built with the most reasonable model that we proposed on the basis of the fibre XRD pattern (Fig. 2c). Every two nearby cellulose chains are connected by one Cu atom through the hydroxyl oxygen atoms. The unit cell is denoted by dashed blue lines. e, Top and side views of the Cuâ€“CNFâ€“NaOH. f, Top and side views of the amorphous Cuâ€“CNF obtained by removing NaOH aqueous solution from Cuâ€“CNFâ€“NaOH and then equilibrating the system with NPT dynamics simulations. In Cuâ€“CNF, we reserved 144 H2O molecules to keep an H2O:AGU ratio of 1:1. g, Schematic of the computational approach used to obtain the atomic structure of the final amorphous Liâ€“Cuâ€“CNF model (top and side views).


Extended Data Fig. 3 Bound water analysis of Liâ€“Cuâ€“CNF.
a, 1H MAS NMR spectra of Liâ€“Cuâ€“CNF with peak deconvolution. b, 1H MAS NMR spectra of Cuâ€“CNF (dried at 30â€‰Â°C under vacuum for three days to remove water). c, FTIR of the pristine CNFs and solid-state Liâ€“Cuâ€“CNF. Both the pristine CNFs and Liâ€“Cuâ€“CNF show a broad â€“OH stretching peak at roughly 3,300Â cmâˆ’1. d, The âˆ’OH stretching peak of Liâ€“Cuâ€“CNF deconvoluted into three bands at 3,464Â cmâˆ’1, 3,235Â cmâˆ’1 and 2,886Â cmâˆ’1, which can be assigned to bound water molecules in different hydrogen-bonding states49,50. e, The atomic mean square displacement (MSD) change in CNF and Liâ€“Cuâ€“CNF as a function of temperature, as measured by QENS. The Cuâ€“CNF sample after DMF solvent exchange with some residual DMF (Cuâ€“CNFâ€“DMF) is also shown for comparison. f, Elastic neutron-scattering intensity of free water plotted against temperature (60Â Î¼l H2O on Cu foil) upon cooling; data derived from ref. 51. g, DSC curve of Liâ€“Cuâ€“CNF in a cooling process from 30â€‰Â°C to âˆ’30â€‰Â°C. h, Plots of H2Oâ€“H2O radial distribution function (RDF) (solid lines) and coordination number (dashed lines) in liquid bulk water (red lines) and Liâ€“Cuâ€“CNF (blue lines). The first minimum of the RDF plot for the liquid bulk water system at 3.4Â Ã… (indicated by the black dashed line) was applied to calculate the coordination numbers. The distance is defined as the distance between the O atoms of the H2O molecules. i, Stressâ€“strain curve of Liâ€“Cuâ€“CNF along the direction of the CNF fibre. For more analysis, see Supplementary DiscussionÂ 11.


Extended Data Fig. 4 Electrochemical stability of Liâ€“Cuâ€“CNF.
a, b, The electrochemical stability window of Liâ€“Cuâ€“CNF was measured by both anodic and cathodic LSV scans at 0.1Â mVÂ sâˆ’1. a, The first three anodic scans from OCV to 5.4Â V. b, The first three cathodic scans from OCV to 0Â V. c, Top, reduction and oxidation potentials (versus Li+/Li) obtained from DFT calculations for (bottom) different structures representative of the cellulose and Liâ€“Cuâ€“CNF systems, including: (1) glucose; (2) AGU dimer; (3) AGUâ€“COOLi; (4, 5) two isomers of (AGU)2â€“COOLi; (6) AGUâ€“CH2OLi; (7, 8) two isomers of (AGU)2â€“CH2OLi; (9) Cuâ€“ (AGU)2; (10) H2O dimer; and (11) (AGU)2â€“(H2O)2. C, H, O, Li and Cu atoms are represented by grey, white, red, purple and blue spheres, respectively. Water molecules are depicted with stick models. The experimental oxidation potential for Liâ€“Cuâ€“CNF (black) and the redox potentials for EC are denoted with dashed lines (blue for reduction and red for oxidation) for reference. See Supplementary DiscussionÂ 12 for more detailed analysis.


Extended Data Fig. 5 Ionic conductivities and transference numbers of Liâ€“Cuâ€“CNF and Liâ€“CNF.
a, Voltage profile of the galvanostatic Li plating and stripping between two ends of the Liâ€“Cuâ€“CNF with aligned cellulose fibres (length 1Â cm) at 0.01Â mA. b, EIS Nyquist plots of aligned Liâ€“Cuâ€“CNF materials of different lengths, ranging from 1Â cm to 3Â cm, for measuring the intrinsic conductivity of Liâ€“Cuâ€“CNF along the direction of the cellulose molecular chain. c, Resistance corresponding to the high-frequency semi-circle in b of the aligned Liâ€“Cuâ€“CNF with different lengths. d, EIS Nyquist plots of the aligned Liâ€“Cuâ€“CNF with a length of 3 cm and cross-sectional area of 0.03Â cm2 at different temperatures, ranging from 10â€‰Â°C to 60â€‰Â°C. e, f, EIS Nyquist plots of the Liâ€“Cuâ€“CNF paper electrolyte (through-plane) at different temperatures (e, 60â€‰Â°C to 0â€‰Â°C; f, âˆ’2â€‰Â°C to âˆ’20â€‰Â°C); g, the corresponding temperature-dependent through-plane ionic conductivity of the Liâ€“Cuâ€“CNF paper electrolyte. h, d.c. polarization curve of the Cu2+ in the Liâ€“Cuâ€“CNF electrolyte in a Cu//Cu-CNF//Cu cell, showing that the Cu2+ conductivity is 1.0Â Ã—Â 10âˆ’8Â SÂ cmâˆ’1, much lower than the Li+ conductivity in Liâ€“Cuâ€“CNF. i, Simulated structure of Liâ€“CNF by MD. The Liâ€“CNF system consists of 16 cellulose chains surrounded by Li+ and water molecules. Different chains are denoted by different colours. Li+ ions are indicated by purple spheres and water molecules as stick models. The size of the Liâ€“CNF system is given roughly. The simulations show that, without the participation of Cu2+, the Li+ and water molecules adsorb only on the surface of the cellulose structures. j, d.c. polarization curve, and k, EIS Nyquist plots before and after polarization of the Li//Liâ€“Cuâ€“CNF//Li cell. l, d.c. polarization curve, and m, EIS Nyquist plots before and after polarization of the Li//Liâ€“CNF//Li cell. n, Table showing the parameters measured by d.c. polarization and EIS for calculating the Li+-transference number.


Extended Data Fig. 6 NMR analysis of Li-coordination environments and diffusion pathways.
a, b, 6Li NMR spectra and simulations for: a, Liâ€“Cuâ€“CNF; b, Liâ€“CNF. c, d, 6Li NMR spectra for: c, CH2COOLiâˆ™2H2O, and d, LiPF6, as references for the COOâˆ™âˆ™âˆ™Li and LiPF6 peak assignments in Liâ€“Cuâ€“CNF. e, f, 6Li NMR spectra and simulations for: e, Liâ€“Cuâ€“CNF, and f, Liâ€“CNF after 6Liâ†’7Li tracer exchange, which was performed by cycling either the Liâ€“Cuâ€“CNF or the Liâ€“CNF electrolyte (natural abundance: 92.4% 7Li and 7.6% 6Li) between two 6Li-enriched metal electrodes (that is, symmetric 6Li//Liâ€“Cuâ€“CNF//6Li cells). g, Table showing the amount of Li+ in the different chemical environments of Liâ€“Cuâ€“CNF and Liâ€“CNF before and after 6Liâ†’7Li tracer exchange, derived from the relative spectral areal integrals of the 6Li resonances in the NMR spectra shown in a, b, e, f. The normalized peak area for each sample (Liâ€“Cuâ€“CNF and Liâ€“CNF, before and after 6Liâ†’7Li tracer exchange) can be quantitatively compared between different samples as the normalized peak area is proportional to the amount of 6Li in each individual product. We took the total number of 6Li in the pristine Liâ€“Cuâ€“CNF (before 6Liâ†’7Li tracer exchange) to be 100%, and calculated the â€˜relative 6Li numberâ€™ of each component by comparing the fitted peak area (Extended Data Fig. 6a, b, e, f) with the total area of 6Li in the pristine Liâ€“Cuâ€“CNF (Extended Data Fig. 6a).


Extended Data Fig. 7 Numerical analyses of MD simulations for Li+ transport in Liâ€“Cuâ€“CNF.
a, Displacement plots for six Li+ ions that have displacements of more than 15.0Â Ã… in the simulated Liâ€“Cuâ€“CNF system (Fig. 2i) with an H2O:AGU ratio of 1:1, and indexes of COO/RO atoms that are bonded to the six movingÂ Li+ ions (Liâ€“O distance less than 2.5Â Ã…). The different colours of the COO/RO atoms indicate they are from different cellulose chains.Â b, Coordination numbers of Li+ ions coordinating with all available oxygen atoms (Liâ€“O, including the oxygen atoms in cellulose and bound water molecules) and with just water molecules (Liâ€“H2O) for the six fastest and six slowest Li+ ions in the Liâ€“Cuâ€“CNF system with an H2O:AGU ratio of 1:1. c, MSD plots for Liâ€“Cuâ€“CNF systems with different number of water molecules, and for the Liâ€“CNF system with water molecules on the surface of the CNFs. d, Radial distribution functions (RDFs) for Liâ€“Li and COOâ€“RO pairs in Liâ€“Cuâ€“CNF with an H2O:AGU ratio of 1:1. The locations of the first peak of the Liâ€“Li pair and the second peak of the COO-RO pair indicate the Li+ hopping distance (roughly 3.0Â Ã…) between the residence sites. The first peak of the COOâ€“RO pair indicates the distance between the two O atoms within the same COO group. e, MSD plots for Li+, COOâˆ’ and ROâˆ’ groups and Cu2+ in the simulated Liâ€“Cuâ€“CNF system with an H2O:AGU ratio of 1:1. The average MSD plots show that Li+ moves fast while COOâˆ’, ROâˆ’, and Cu2+ in the Liâ€“Cuâ€“CNF backbone move much more slowly. For further analysis, see Supplementary DiscussionÂ 13.


Extended Data Fig. 8 The Liâ€“Cuâ€“CNF paper electrolyte and its electrochemical performance.
a, Top-view SEM image of the Liâ€“Cuâ€“CNF paper electrolyte. b, Digital photos (top and back) of a permeability test of the Liâ€“Cuâ€“CNF paper electrolyte to demonstrate the denseness. c, Li plating/stripping cycling performance of the Liâ€“Cuâ€“CNF paper electrolyte at 0.5Â mAÂ cmâˆ’2, with 2Â h for each plating/stripping half cycle, for a total of 300Â h at room temperature. d, SEM image and e, corresponding EDX spectrum of the Li-metal anode after long-term cycling with the Liâ€“Cuâ€“CNF paper electrolyte. The SEM image of the cycled Li anode shows a fairly smooth surface without Cu particles deposited on the surface. The EDX shows no detectable Cu element on the Li surface, and instead only C, O, F and P, indicating the formation of a solid electrolyte interphase (SEI) on the Li-metal anode.


Extended Data Fig. 9 Demonstration using Liâ€“Cuâ€“CNF as a paper electrolyte and ion-conducting binder for solid-state LiFePO4 batteries.
a, Fabrication steps for incorporating the cathode material (LiFePO4 here) with the Liâ€“Cuâ€“CNF ion-conducting binder via the traditional slurry-casting method. The Cuâ€“CNF suspension is first mixed with the cathode material, CNT additive and sodium alginate binder in an aqueous solution to obtain the cathode slurry. The slurry is then cast on aluminium foil using a doctor blade and vacuum dried at 35â€‰Â°C. The cathode electrodes are then soaked in Li+ electrolyte to achieve the insertion of Li+ into the Cuâ€“CNF, followed by vacuum drying to obtain solid electrodes containing the Liâ€“Cuâ€“CNF binder. b, c, EIS of the solid-state batteries using thick LiFePO4 cathodes (roughly 120Â Î¼m), made by filtration-pressing with the addition of: b, Liâ€“Cuâ€“CNF; c, Liâ€“CNF. d, A pouch solid-state battery made using a Li anode, the Liâ€“Cuâ€“CNF paper SPE, and a LiFePO4 solid-state cathode containing the Liâ€“Cuâ€“CNF ion-conducting binder, which shows good flexibility while still powering an LED light.


Extended Data Fig. 10 Electrochemical performances of high-voltage cathodes with the solid-state Liâ€“Cuâ€“CNF electrolyte.
a, b, Typical galvanostatic charge/discharge voltage profile of a solid-state NMC811 cathode with the Liâ€“Cuâ€“CNF electrolyte cycled at 100Â mAÂ gâˆ’1 and room temperature (a); and its discharge capacities during cycling (b). c, d, Typical galvanostatic charge/discharge voltage profile of the solid-state LiMn2O4 cathode with the Liâ€“Cuâ€“CNF electrolyte cycled at 50Â mAÂ gâˆ’1 and room temperature (c); and its discharge capacities during cycling (d).
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