Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Day–night cloud asymmetry prevents early oceans on Venus but not on Earth

Abstract

Earth has had oceans for nearly four billion years1 and Mars had lakes and rivers 3.5–3.8 billion years ago2. However, it is still unknown whether water has ever condensed on the surface of Venus3,4 because the planet—now completely dry5—has undergone global resurfacing events that obscure most of its history6,7. The conditions required for water to have initially condensed on the surface of Solar System terrestrial planets are highly uncertain, as they have so far only been studied with one-dimensional numerical climate models3 that cannot account for the effects of atmospheric circulation and clouds, which are key climate stabilizers. Here we show using three-dimensional global climate model simulations of early Venus and Earth that water clouds—which preferentially form on the nightside, owing to the strong subsolar water vapour absorption—have a strong net warming effect that inhibits surface water condensation even at modest insolations (down to 325 watts per square metre, that is, 0.95 times the Earth solar constant). This shows that water never condensed and that, consequently, oceans never formed on the surface of Venus. Furthermore, this shows that the formation of Earth’s oceans required much lower insolation than today, which was made possible by the faint young Sun. This also implies the existence of another stability state for present-day Earth: the ‘steam Earth’, with all the water from the oceans evaporated into the atmosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Day and night water cloud feedbacks.
Fig. 2: Water clouds and thermal emission horizontal maps.
Fig. 3: Mechanisms of nocturnal cloud formation.
Fig. 4: Hysteresis loops and conditions of ocean formation on Earth and Venus.

Data availability

The data that support the findings of this study are available at https://doi.org/10.5281/zenodo.4680905Source data are provided with this paper.

Code availability

The LMD Generic global climate model code (and documentation on how to use the model) used in this work can be downloaded from the SVN repository at https://svn.lmd.jussieu.fr/Planeto/trunk/LMDZ.GENERIC/ (version 2528). More information and documentation are available at http://www-planets.lmd.jussieu.fr.

References

  1. 1.

    Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Haberle, R. M., Catling, D. C., Carr, M. H. & Zahnle, K. J. in The Atmosphere and Climate of Mars (eds Haberle, R. M. et al.) 526–568 (Cambridge Planetary Science, Cambridge Univ. Press, 2017).

  3. 3.

    Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    ADS  CAS  Google Scholar 

  4. 4.

    Way, M. J. et al. Was Venus the first habitable world of our Solar System? Geophys. Res. Lett. 43, 8376–8383 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bézard, B. & de Bergh, C. Composition of the atmosphere of Venus below the clouds. J. Geophys. Res. Planets 112, E04S07 (2007).

    Google Scholar 

  6. 6.

    Phillips, R. J. et al. Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15923–15948 (1992).

    ADS  Google Scholar 

  7. 7.

    Kreslavsky, M. A., Ivanov, M. A. & Head, J. W. The resurfacing history of Venus: constraints from buffered crater densities. Icarus 250, 438–450 (2015).

    ADS  Google Scholar 

  8. 8.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    ADS  Google Scholar 

  9. 9.

    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    ADS  CAS  Google Scholar 

  10. 10.

    Kite, E. S. Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019).

    ADS  Google Scholar 

  11. 11.

    Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Google Scholar 

  12. 12.

    de Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991).

    ADS  Google Scholar 

  13. 13.

    Marcq, E., Mills, F. P., Parkinson, C. D. & Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214, 10 (2018).

    ADS  Google Scholar 

  14. 14.

    Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983).

    ADS  CAS  Google Scholar 

  15. 15.

    Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    ADS  CAS  Google Scholar 

  16. 16.

    Salvador, A. et al. The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res. Planets 122, 1458–1486 (2017).

    ADS  CAS  Google Scholar 

  17. 17.

    Charnay, B. et al. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J. Geophys. Res. Atmos. 118, 10414–10431 (2013).

    ADS  CAS  Google Scholar 

  18. 18.

    Wolf, E. T. & Toon, E. B. Hospitable Archean climates simulated by a general circulation model. Astrobiology 13, 656–673 (2013).

    ADS  CAS  Google Scholar 

  19. 19.

    Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–280 (2013).

    ADS  CAS  Google Scholar 

  20. 20.

    Wolf, E. T. & Toon, O. B. Delayed onset of runaway and moist greenhouse climates for Earth. Geophys. Res. Lett. 41, 167–172 (2014).

    ADS  Google Scholar 

  21. 21.

    Charnay, B., Wolf, E. T., Marty, B. & Forget, F. Is the faint young Sun problem for Earth solved? Space Sci. Rev. 216, 90 (2020).

    ADS  Google Scholar 

  22. 22.

    Pierrehumbert, R. T. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52, 1784–1806 (1995).

    ADS  Google Scholar 

  23. 23.

    Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    ADS  CAS  Google Scholar 

  24. 24.

    Lebrun, T. et al. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. Planets 118, 1155–1176 (2013).

    ADS  CAS  Google Scholar 

  25. 25.

    Kopparapu, R. K. et al. habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M dwarfs. Astrophys. J. 845, 5 (2017).

    ADS  Google Scholar 

  26. 26.

    Fujii, Y., Del Genio, A. D. & Amundsen, D. S. NIR-driven moist upper atmospheres of synchronously rotating temperate terrestrial exoplanets. Astrophys. J. 848, 100 (2017).

    ADS  Google Scholar 

  27. 27.

    Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    ADS  Google Scholar 

  28. 28.

    Goldblatt, C., Robinson, T. D., Zahnle, K. J. & Crisp, D. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013).

    ADS  CAS  Google Scholar 

  29. 29.

    Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E. & Fauchez, T. The runaway greenhouse radius inflation effect—an observational diagnostic to probe water on earth-sized planets and test the habitable zone concept. Astron. Astrophys. 628, A12 (2019).

    ADS  CAS  Google Scholar 

  30. 30.

    Jansen, T., Scharf, C., Way, M. & Del Genio, A. Climates of warm Earth-like planets. II. Rotational “Goldilocks” zones for fractional habitability and silicate weathering. Astrophys. J. 875, 79 (2019).

    ADS  CAS  Google Scholar 

  31. 31.

    Yang, J., Cowan, N. B. & Abbot, D. S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J. Lett. 771, L45 (2013).

    ADS  Google Scholar 

  32. 32.

    Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014).

    ADS  Google Scholar 

  33. 33.

    Kopparapu, R. K. et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys. J. 819, 84 (2016).

    ADS  Google Scholar 

  34. 34.

    Fauchez, T. J. et al. TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J. 2, 106 (2021).

  35. 35.

    Grinspoon, D. H. Was Venus wet? Deuterium reconsidered. Science 238, 1702–1704 (1987).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993).

    ADS  CAS  Google Scholar 

  37. 37.

    Gurwell, M. A. Evolution of deuterium on Venus. Nature 378, 22–23 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).

    ADS  CAS  Google Scholar 

  39. 39.

    Persson, M. et al. The Venusian atmospheric oxygen ion escape: extrapolation to the early Solar System. J. Geophys. Res. Planets 125, e06336 (2020).

    Google Scholar 

  40. 40.

    Lichtenegger, H. I. M. et al. Solar XUV and ENA-driven water loss from early Venus’ steam atmosphere. J. Geophys. Res. Space Phys. 121, 4718–4732 (2016).

    ADS  CAS  Google Scholar 

  41. 41.

    Lammer, H. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26, 2 (2018).

    ADS  Google Scholar 

  42. 42.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    ADS  CAS  Google Scholar 

  43. 43.

    Shields, A. L., Bitz, C. M., Meadows, V. S., Joshi, M. M. & Robinson, T. D. Spectrum-driven planetary deglaciation due to increases in stellar luminosity. Astrophys. J. Lett. 785, L9 (2014).

    ADS  Google Scholar 

  44. 44.

    Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006).

    Google Scholar 

  45. 45.

    Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999).

    ADS  CAS  Google Scholar 

  46. 46.

    Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    ADS  CAS  Google Scholar 

  47. 47.

    Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    ADS  CAS  Google Scholar 

  48. 48.

    Turbet, M., Forget, F., Leconte, J., Charnay, B. & Tobie, G. CO2 condensation is a serious limit to the deglaciation of Earth-like planets. Earth Planet. Sci. Lett. 476, 11–21 (2017).

    ADS  CAS  Google Scholar 

  49. 49.

    Turbet, M. et al. The environmental effects of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus 335, 113419 (2020).

    Google Scholar 

  50. 50.

    Wordsworth, R. D. et al. Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. Astrophys. J. Lett. 733, L48 (2011).

    ADS  Google Scholar 

  51. 51.

    Leconte, J. et al. 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69 (2013).

    Google Scholar 

  52. 52.

    Turbet, M. et al. Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astron. Astrophys. 612, A86 (2018).

    Google Scholar 

  53. 53.

    Fu, Q. & Liou, K. N. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 49, 2139–2156 (1992).

    ADS  Google Scholar 

  54. 54.

    Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).

    ADS  CAS  Google Scholar 

  55. 55.

    Mlawer, E. J. et al. Development and recent evaluation of the MT CKD model of continuum absorption. Phil. Trans. R. Soc. Lond. A 370, 2520– 2556 (2012).

    ADS  CAS  Google Scholar 

  56. 56.

    Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

    ADS  CAS  Google Scholar 

  57. 57.

    Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    ADS  CAS  Google Scholar 

  58. 58.

    Mellor, G. L. & Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875 (1982).

    ADS  Google Scholar 

  59. 59.

    Galperin, B., Kantha, L. H., Hassid, S. & Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 55–62 (1988).

    ADS  Google Scholar 

  60. 60.

    Manabe, S. & Wetherald, R. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    ADS  CAS  Google Scholar 

  61. 61.

    Charnay, B. Tropospheric Dynamics and Climatic Evolution of Titan and the Early Earth. PhD thesis, Univ. Pierre et Marie Curie - Paris VI (2014); https://tel.archives-ouvertes.fr/tel-00987546

  62. 62.

    Wallace, J. M. & Hobbs, P. V. in Atmospheric Science 2nd edn (eds Wallace, J. M. & Hobbs, P. V.) 209–269 (Academic, 2006).

  63. 63.

    Charnay, B. et al. Formation and dynamics of water clouds on temperate sub-Neptunes: the example of K2-18b. Astron. Astrophys. 646, A171 (2021).

    CAS  Google Scholar 

  64. 64.

    Boucher, O., Le Treut, H. & Baker, M. B. Precipitation and radiation modeling in a general circulation model: introduction of cloud microphysical processes. J. Geophys. Res. 100, 16395–16414 (1995).

    ADS  Google Scholar 

  65. 65.

    Gregory, D. A consistent treatment of the evaporation of rain and snow for use in large-scale models. Mon. Weather Rev. 123, 2716–2732 (1995).

    ADS  Google Scholar 

  66. 66.

    Rossow, W. B. Cloud microphysics—analysis of the clouds of Earth, Venus, Mars, and Jupiter. Icarus 36, 1–50 (1978).

    ADS  CAS  Google Scholar 

  67. 67.

    Nakajima, S., Hayashi, Y.-Y. & Abe, Y. A study on the ’runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci. 49, 2256–2266 (1992).

    ADS  Google Scholar 

  68. 68.

    Goldblatt, C. & Watson, A. J. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres. Phil. Trans. R. Soc. Lond. A 370, 4197–4216 (2012).

    ADS  CAS  Google Scholar 

  69. 69.

    Marcq, E., Salvador, A., Massol, H. & Davaille, A. Thermal radiation of magma ocean planets using a 1-D radiative-convective model of H2O–CO2 atmospheres. J. Geophys. Res. Planets 122, 1539–1553 (2017).

    ADS  CAS  Google Scholar 

  70. 70.

    Massol, H. et al. Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016).

    ADS  CAS  Google Scholar 

  71. 71.

    Pluriel, W., Marcq, E. & Turbet, M. Modeling the albedo of Earth-like magma ocean planets with H2O–CO2 atmospheres. Icarus 317, 583–590 (2019).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 832738/ESCAPE. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement numbers 724427/FOUR ACES and 679030/WHIPLASH). This work has been carried out within the framework of the National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation. We acknowledge the financial support of the SNSF. M.T. thanks the Gruber Foundation for its support to this research. M.T. thanks N. Chaniaud for her help in preparing Fig. 1. We thank the LMD Generic global climate team for the teamwork development and improvement of the model. This work was performed using the high-performance computing resources of Centre Informatique National de l’Enseignement Supérieur (CINES) under the allocation A0080110391 made by Grand Équipement National de Calcul Intensif (GENCI). A total of about 600,000 CPU hours were used for this project on the OCCIGEN supercomputer, resulting in roughly one ton equivalent of CO2 emissions.

Author information

Affiliations

Authors

Contributions

M.T. developed the core ideas of the manuscript, developed and performed the 3D GCM simulations, wrote the manuscript and prepared the figures. E.B. and G.C. provided advice on sensitivity studies. D.E., G.C. and J.L. provided advice on the structure of the figures. J.L. provided advice on the organization of the manuscript, as well as for understanding the mechanism of cloud formation. E.M. provided advice on literature selection. All authors provided guidance and comments on the manuscript.

Corresponding author

Correspondence to Martin Turbet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Stephen Kane, James Kasting and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Temporal evolution of modelled surface temperatures.

Temporal evolution of the globally averaged surface temperatures in the 3-D GCM baseline simulations of (initially hot and steamy) Venus, for several insolations.

Extended Data Fig. 2 Cloud forcings in hot and steamy early Venus and Earth simulations.

Radiative balance of clouds on hot and steamy Earth (a) and Venus (b) as a function of the incident solar flux. Blue curves indicate the greenhouse effect of clouds. Red curves indicate the amount of incoming solar radiation reflected back by the clouds (the more negative the value, the greater the reflected flux.). Black curves indicate the net radiative effect of clouds (positive values mean warming). In all initially hot and steamy simulations, clouds lead to a strong atmospheric warming.

Source data

Extended Data Fig. 3 Radiative budget comparisons between 1D and 3D models.

Thermal emission to space (a) and bond albedo (b) as a function of the surface temperature for our 3-D GCM simulations of Earth (blue) and Venus (red). We have also added the results of 1-D radiative-convective cloud-free calculations29 (in black), using H2O and N2 partial pressures of 10 and 1 bar, respectively, as in the 3-D baseline simulations. For comparison, we added the moist tropospheric radiation limits68 for the thermal emission67 and the bond albedo from refs. 27,28.

Source data

Extended Data Fig. 4 Impact of cloud microphysical properties on their spatial distribution.

Maps of water cloud column for early Venus (at a top-of-atmosphere insolation of 500 W m−2, i.e. the minimal insolation received on Venus, about 4 billion years ago when the Sun was 25% fainter than today), with different cloud microphysics parameterisations (103, 104, 105, 106 and 107 cloud condensation nuclei (CCN) per kg of air, for panels a, b, c, d and e, respectively). The maps were calculated in the heliocentric frame (i.e., keeping the subsolar point at 0° longitude and 0° latitude), and using an average of two Venusian days. The distribution of clouds (present on the nightside, absent on the dayside) is robust to the choice of the number of CCN.

Source data

Extended Data Fig. 5 Effects of water and carbon dioxide atmospheric contents.

Impact of the water and carbon dioxide atmospheric contents on the surface temperature (a), thermal emission to space (b), bond albedo (c) and net cloud radiative forcing (d). The calculations assume a hot and steamy Venus (insolation at 500 W/m2) with 1 bar of N2 and between 1 and 30 bar of H2O (in blue); with 1-10 bar of CO2 and 10 bar of H2O (in red).

Extended Data Table 1 Summary of the main physical parameters used in the GCM for the baseline hot and steamy Earth and Venus simulations

Supplementary information

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turbet, M., Bolmont, E., Chaverot, G. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021). https://doi.org/10.1038/s41586-021-03873-w

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing