Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The importance of lake breach floods for valley incision on early Mars

Subjects

Abstract

The surface environment of early Mars had an active hydrologic cycle, including flowing liquid water that carved river valleys1,2,3 and filled lake basins4,5,6. Over 200 of these lake basins filled with sufficient water to breach the confining topography4,6, causing catastrophic flooding and incision of outlet canyons7,8,9,10. Much past work has recognized the local importance of lake breach floods on Mars for rapidly incising large valleys7,8,9,10,11,12; however, on a global scale, valley systems have often been interpreted as recording more persistent fluvial erosion linked to a distributed Martian hydrologic cycle1,2,3,13,14,15,16. Here, we demonstrate the global importance of lake breach flooding, and find that it was responsible for eroding at least 24% of the volume of incised valleys on early Mars, despite representing only approximately 3% of total valley length. We conclude that lake breach floods were a major geomorphic process responsible for valley incision on early Mars, which in turn influenced the topographic form of many Martian valley systems and the broader landscape evolution of the cratered highlands. Our results indicate that the importance of lake breach floods should be considered when reconstructing the formative conditions for Martian valley systems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Valley networks and palaeolake outlet canyons on Mars.
Fig. 2: Cumulative distribution of depths for valley networks and palaeolake outlet canyons.
Fig. 3: Transverse valleys on Mars.

Data availability

All data used to conduct the analysis presented here have been archived through the Texas Data Repository and are available at https://doi.org/10.18738/T8/STRFZH. Archived data include georeferenced shapefiles (full valley catalogue, with classifications; open-basin palaeolake database; and masks) and rasters (PBTH output of valley depth).

References

  1. Pieri, D. C. Martian valleys: morphology, distribution, age, and origin. Science 210, 895–897 (1980).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. Howard, A. D., Moore, J. M. & Irwin, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).

    ADS  Article  Google Scholar 

  3. Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008 (2010).

    ADS  Article  Google Scholar 

  4. Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of Martian impact crater lakes. Icarus 142, 160–172 (1999).

    ADS  Article  Google Scholar 

  5. Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005).

    ADS  Article  Google Scholar 

  6. Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    ADS  Article  Google Scholar 

  7. Irwin, R. P., Maxwell, T. A., Howard, A. D., Craddock, R. A. & Leverington, D. W. A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296, 2209–2212 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  8. Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109, E12009 (2004).

    ADS  Article  Google Scholar 

  9. Goudge, T. A., Fassett, C. I. & Mohrig, D. Incision of paleolake outlet canyons on Mars from overflow flooding. Geology 47, 7–10 (2019).

    ADS  Article  Google Scholar 

  10. Irwin, R. P. & Grant, J. A. in Megaflooding on Earth and Mars (eds Burr, D. M. et al.) 209–224 (Cambridge Univ. Press, 2009).

  11. Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).

    ADS  Article  Google Scholar 

  12. Goudge, T. A. & Fassett, C. I. Incision of Licus Vallis, Mars from multiple lake overflow floods. J. Geophys. Res. 123, 405–420 (2018).

    Article  Google Scholar 

  13. Aharonson, O., Zuber, M. T., Rothman, D. H., Schorghofer, N. & Whipple, K. X. Drainage basins and channel incision on Mars. Proc. Natl Acad. Sci. 99, 1780–1783 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Som, S. M., Montgomery, D. R. & Greenberg, H. M. Scaling relations for large Martian valleys. J. Geophys. Res. 114, E02005 (2009).

    ADS  Google Scholar 

  15. Grau Galofre, A., Bahia, R. S., Jellinek, A. M., Whipple, K. X. & Gallo, R. Did martian valley networks substantially modify the landscape? Earth Planet. Sci. Lett. 547, 116482 (2020).

    CAS  Article  Google Scholar 

  16. Grau Galofre, A., Jellinek, A. M. & Osinski, G. R. Valley formation on early Mars by subglacial and fluvial erosion. Nature Geosci. 13, 663–668 (2020).

    ADS  CAS  Article  Google Scholar 

  17. Fassett, C. I. & Head, J. W. The timing of martian valley network activity: Constraints from buffered crater counting. Icarus 195, 61–89 (2008).

    ADS  Article  Google Scholar 

  18. Matsubara, Y., Howard, A. D. & Irwin, R. P. Constraints on the Noachian paleoclimate of the martian highlands from landscape evolution modeling. J. Geophys. Res. 123, 2958–2979 (2018).

    Article  Google Scholar 

  19. Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    ADS  Article  Google Scholar 

  20. Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).

    ADS  Article  Google Scholar 

  21. O’Connor, J. E. & Baker, V. R. Magnitudes and implications of peak discharges from glacial Lake Missoula. Geol. Soc. Amer. Bull. 104, 267–279 (1992).

    ADS  Article  Google Scholar 

  22. Gupta, S., Collier, J. S., Palmer-Felgate, A. & Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–345 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  23. Lamb, M. P. & Fonstad, M. A. Rapid formation of a modern bedrock canyon by a single flood event. Nature Geosci. 3, 477–481 (2010).

    ADS  CAS  Article  Google Scholar 

  24. Tanaka, K. L. et al. Geologic Map of Mars US Geological Survey Scientific Investigations Map SIM 3292 http://pubs.usgs.gov/sim/3292 (2014).

  25. Luo, W., Pingel, T., Heo, J., Howard, A. & Jung, J. A progressive black top hat transformation algorithm for estimated valley volumes on Mars. Comput. Geosci. 75, 17–23 (2015).

    ADS  Article  Google Scholar 

  26. Luo, W., Cang, X. & Howard, A. D. New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat. Comm. 8, 15766 (2017).

    ADS  CAS  Article  Google Scholar 

  27. Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 689–23,722 (2001).

    Google Scholar 

  28. Mustard, J. F., Cooper, C. D. & Rifkin, M. K. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412, 411–414 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  29. Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C. & Watters, J. L. Martian water budget: geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. 119, 2188–2196 (2014).

    CAS  Article  Google Scholar 

  30. Rosenberg, E. N. & Head, J. W. Late Noachian fluvial erosion on Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015).

    ADS  Article  Google Scholar 

  31. Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    ADS  CAS  Article  Google Scholar 

  32. Stokes, M. & Mather, A. E. Tectonic origin and evolution of a transverse drainage: the Río Almanzora, Betic Cordillera, Southeast Spain. Geomorphology 50, 59–81 (2003).

    ADS  Article  Google Scholar 

  33. Douglass, J. & Schmeeckle, M. Analogue modeling of transverse drainage mechanisms. Geomorphology 84, 22–43 (2007).

    ADS  Article  Google Scholar 

  34. Hilgendorf, Z., Wells, G., Larson, P. H., Millett, J. & Kohout, M. From basins to rivers: understanding the revitalization and significance of top-down drainage integration mechanism in drainage basin evolution. Geomorphology 352, 107020 (2020).

    Article  Google Scholar 

  35. Irwin, R. P., Craddock, R. A., Howard, A. D. & Flemming, H. L. Topographic influences on development of Martian valley networks. J. Geophys. Res. 116, E02005 (2011).

    ADS  Article  Google Scholar 

  36. Black, B. A. et al. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 356, 727–731 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. Douglass, J. C. et al. Evidence for the overflow origin of the Grand Canyon. Geomorphology 369, 107361 (2020).

    Article  Google Scholar 

  38. Geurts, A. H., Whittaker, A. C., Gawthorpe, R. L. & Cowie, P. A. Transient landscape and stratigraphic responses to drainage integration in the actively extending central Italian Apennines. Geomorphology 353, 107013 (2020).

    Article  Google Scholar 

  39. Howard, A. D., Dietrich, W. E. & Seidl, M. A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 971–12,986 (1994).

    Google Scholar 

  40. Berlin, M. M. & Anderson, R. S. Modeling of knickpoint retreat on the Roan Plateau, western Colorado. J. Geophys. Res. 112, F03S06 (2007).

    ADS  Article  Google Scholar 

  41. Fergason, R. L., Hare, T. M. & Laura, J. Mars MGS MOLA - MEX HRSC Blended DEM Global 200m v2. Astrogeology PDS Annex, US Geological Survey http://bit.ly/HRSC_MOLA_Blend_v0 (2018).

  42. Neukum, G. et al. HRSC: the High Resolution Stereo Camera of Mars Express. European Space Agency Special Publication ESA SP-1240, 17–35 (2004).

  43. Christensen, P. R. et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004).

    ADS  CAS  Article  Google Scholar 

  44. Edwards, C. S. et al. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011).

    ADS  Article  Google Scholar 

  45. Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  46. Harrison, T. N., Osinski, G. R., Tornabene, L. L. & Jones, E. Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252, 236–254 (2015).

    ADS  CAS  Article  Google Scholar 

  47. Irwin, R. P., Watters, T. R., Howard, A. D. & Zimbelman, J. R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. 109, E09011 (2004).

    ADS  Google Scholar 

  48. Irwin, R. P. & Watters, T. R. Geology of the Martian crustal dichotomy boundary: Age, modifications, and implications for modeling efforts. J. Geophys. Res. 115, E11006 (2010).

    ADS  Article  Google Scholar 

  49. Baker, V. R. & Milton, D. J. Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974).

    ADS  Article  Google Scholar 

  50. Carr, M. H. Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–3007 (1979).

    ADS  Article  Google Scholar 

  51. Coleman, N. M. & Baker, V. R. in Megaflooding on Earth and Mars (eds Burr, D. M. et al.) 172–193 (Cambridge Univ. Press, 2009).

  52. Mest, S. C. & Crown, D. A. Geology of the Reull Vallis region, Mars. Icarus 153, 89–110 (2001).

    ADS  Article  Google Scholar 

  53. Kreslavsky, M. A. & Head, J. W. Kilometer-scale roughness of Mars: results from MOLA data analysis. J. Geophys. Res. 105, 695–26,711 (2000).

    Google Scholar 

  54. Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312, 1–12 (2011).

    ADS  CAS  Article  Google Scholar 

  55. Luo, W. & Stepinski, T. F. Computer-generated global map of valley networks on Mars. J. Geophys. Res. 114, E11010 (2009).

    ADS  Article  Google Scholar 

  56. Malin, M. C. et al. Context Camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007).

    Article  Google Scholar 

  57. Shean, D. E. et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101–117 (2016).

    ADS  Article  Google Scholar 

  58. Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 5, 537–548 (2018).

    ADS  Article  Google Scholar 

  59. Dickson, J. L., Kerber, L. A., Fassett, C. I. & Ehlmann, B. L. A global, blended CTX mosaic of Mars with vectorized seam mapping: a new mosaicking pipeline using principles of non-destructive image editing. In 49th Lunar and Planetary Science Conference 2480 (2018).

Download references

Acknowledgements

This work was supported by funding through NASA MDAP grants 80NSSC17K0442 (T.A.G., G.S.d.Q. and C.I.F.) and 80NSSC17K0454 (A.M.M.). T.A.G. thanks E. Bamber for valuable discussions on transverse valley development on Mars, and J. Clarke for helpful manuscript discussions. This is the University of Texas at Austin Center for Planetary Systems Habitability (UT CPSH) contribution no. 0031.

Author information

Authors and Affiliations

Authors

Contributions

T.A.G. and C.I.F. conceived and designed the study, with input from A.M.M. and G.S.d.Q. T.A.G. conducted data collection, wrote the manuscript, and assisted with data analysis. A.M.M. conducted the data analysis and assisted with data collection. All authors contributed to data collection, interpretation of results, and assisted with writing of the manuscript.

Corresponding author

Correspondence to Timothy A. Goudge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-021-03860-1.

Peer review information Nature thanks Alan Howard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Distribution of valleys removed from the original catalogue.

Final catalogue of valley networks in blue, removed valleys in yellow. Background is MOLA hillshade. See Methods for more complete description of each category. a, Inaccurate valley interpretations where the original mapping was not found to be robust. b, Valleys isolated to walls of craters with diameters < 300 km. c, Valleys associated with the crustal dichotomy boundary. d, Valleys associated with outflow channels. e, Valleys associated with Valles Marineris. f, Valleys associated with volcanic plains and edifices. g, Mawrth Vallis (yellow arrow points to valley). h, Uzboi Vallis (yellow arrow points to valley).

Extended Data Fig. 2 Example output from the progressive black top hat (PBTH) transformation.

Valley network depths outlined in black and palaeolake outlet canyon depths outlined in white. Palaeolake basins indicated in gold. Background is the THEMIS daytime infrared mosaic. a, Image centred at −9.4°N, 133.4°E. b, Image centred at −19.5°N, 344.4°E. See also Fig. 1a for locations.

Extended Data Fig. 3 Cumulative distribution of depths for valley networks and palaeolake outlet canyons with Ma’adim Vallis split out.

Note the substantially deeper depths for Ma’adim Vallis (gold), but the consistently deeper depths for palaeolake outlet canyons even with Ma’adim Vallis removed (green). Total volume of each grouping is listed in the legend.

Extended Data Fig. 4 Palaeolake outlet canyon with hanging tributaries.

a, Mosaic of MOLA gridded topography and CTX stereo-derived DEMs B04_011272_1736-F05_037816_1709, B18_016507_1714-F20_043803_1714, and P22_009782_1707-J02_045425_1707 overlain on a mosaic of CTX images. Image centered at −9.0°N, 135.2°E. b–d, Topographic profiles of hanging tributaries entering the main outlet canyon. Data extracted from CTX stereo-derived DEMs. Raw data in grey, 5 point median filtered data in black. A–A’ extracted from DEM P22_009782_1707-J02_045425_1707. B–B’ extracted from DEM B18_016507_1714-F20_043803_1714. C–C’ extracted from DEMs B18_016507_1714-F20_043803_1714 and B04_011272_1736-F05_037816_1709.

Extended Data Table 1 Total lengths of valley networks, palaeolake outlet canyons, and valleys removed from catalogue, as well as length of valley networks and palaeolake outlet canyons with the ±30° latitude and Early Hesperian age masks applied
Extended Data Table 2 Calculated volumes (m3) with different age and/or latitude masks applied
Extended Data Table 3 Comparison of valley volume (m3) estimates presented here with previous work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goudge, T.A., Morgan, A.M., Stucky de Quay, G. et al. The importance of lake breach floods for valley incision on early Mars. Nature 597, 645–649 (2021). https://doi.org/10.1038/s41586-021-03860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03860-1

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing