Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Normal, dust-obscured galaxies in the epoch of reionization

Abstract

Over the past decades, rest-frame ultraviolet (UV) observations have provided large samples of UV luminous galaxies at redshift (z) greater than 6 (refs. 1,2,3), during the so-called epoch of reionization. While a few of these UV-identified galaxies revealed substantial dust reservoirs4,5,6,7, very heavily dust-obscured sources at these early times have remained elusive. They are limited to a rare population of extreme starburst galaxies8,9,10,11,12 and companions of rare quasars13,14. These studies conclude that the contribution of dust-obscured galaxies to the cosmic star formation rate density at z > 6 is sub-dominant. Recent ALMA and Spitzer observations have identified a more abundant, less extreme population of obscured galaxies at z = 3−6 (refs. 15,16). However, this population has not been confirmed in the reionization epoch so far. Here, we report the discovery of two dust-obscured star-forming galaxies at z = 6.6813 ± 0.0005 and z = 7.3521 ± 0.0005. These objects are not detected in existing rest-frame UV data and were discovered only through their far-infrared [C ii] lines and dust continuum emission as companions to typical UV-luminous galaxies at the same redshift. The two galaxies exhibit lower infrared luminosities and star-formation rates than extreme starbursts, in line with typical star-forming galaxies at z ≈ 7. This population of heavily dust-obscured galaxies appears to contribute 10–25% to the z > 6 cosmic star formation rate density.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: [C ii] 158 μm line and dust emission detections.
Fig. 2: Estimated properties of REBELS-29-2 and REBELS-12-2.
Fig. 3: Contribution of obscured galaxies to the cosmic SFR density \({{\rho }}_{SFR}\).

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. This paper makes use of the following ALMA data: ADS/JAO.ALMA #2019.1.01634.L.

Code availability

The codes used to reduce and analyse the ALMA data are publicly available. The code used to model the optical-to-infrared SEDs is accessible through GitHub (https://github.com/ACCarnall/bagpipes).

References

  1. 1.

    Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  Google Scholar 

  2. 2.

    Bouwens, R. J. et al. UV luminosity functions at redshifts z ~ 4 to z ~ 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).

    Article  Google Scholar 

  3. 3.

    Ono, Y. et al. Great optically luminous dropout research using subaru HSC (GOLDRUSH). I. UV luminosity functions at z ~ 4–7 derived with the half-million dropouts on the 100 deg2 sky. Publ. Astron. Soc. Jpn. 70, S10 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Watson, D. et al. A dusty, normal galaxy in the epoch of reionization. Nature 519, 327–330 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Hashimoto, T. et al. Big three dragons: a z = 7.15 Lyman-break galaxy detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum with ALMA. Publ. Astron. Soc. Jpn. 71, 71 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Tamura, Y. et al. Detection of the far-infrared [O iii] and dust emission in a galaxy at redshift 8.312: early metal enrichment in the heart of the reionization era. Astrophys. J. 874, 27 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Bakx, T. J. L. C. et al. ALMA uncovers the [C ii] emission and warm dust continuum in a z = 8.31 Lyman break galaxy. Mon. Not. R. Astron. Soc. 493, 4294–4307 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Riechers, D. A. et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Strandet, M. L. et al. ISM properties of a massive dusty star-forming galaxy discovered at z ~ 7. Astrophys. J. Lett. 842, L15 (2017).

    Article  Google Scholar 

  10. 10.

    Marrone, D. P. et al. Galaxy growth in a massive halo in the first billion years of cosmic history. Nature 553, 51–54 (2018).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Dudzevičiūtė, U. et al. An ALMA survey of the SCUBA-2 CLS UDS field: physical properties of 707 sub-millimetre galaxies. Mon. Not. R. Astron. Soc. 494, 3828–3860 (2020).

    Article  Google Scholar 

  12. 12.

    Riechers, D. A. et al. COLDz: a high space density of massive dusty starburst galaxies ~ 1 billion years after the big bang. Astrophys. J. 895, 81 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    Decarli, R. et al. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Mazzucchelli, C. et al. Spectral energy distributions of companion galaxies to z ~ 6 quasars. Astrophys. J. 881, 163 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211–214 (2019).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Williams, C. C. et al. Discovery of a dark, massive, ALMA-only galaxy at z ~ 5–6 in a tiny 3 mm survey. Astrophys. J. 884, 154 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Bouwens, R. J. et al. Reionization era bright emission line survey: selection and characterization of luminous interstellar medium reservoirs in the z>6.5 Universe. Preprint at https://arxiv.org/abs/2106.13719 (2021).

  18. 18.

    Bowler, R. A. A. et al. Obscured star formation in bright z = 7 Lyman-break galaxies. Mon. Not. R. Astron. Soc. 481, 1631–1644 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).

    Article  Google Scholar 

  20. 20.

    Swinbank, A. M. et al. An ALMA survey of sub-millimetre galaxies in the Extended Chandra Deep Field South: the far-infrared properties of SMGs. Mon. Not. R. Astron. Soc. 438, 1267–1287 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Walter, F. et al. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field. Nature 486, 233–236 (2012).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Casey, C. M. et al. The brightest galaxies in the dark ages: galaxies’ dust continuum emission during the reionization era. Astrophys. J. 862, 77 (2018).

    Article  Google Scholar 

  23. 23.

    Zavala, J. A. et al. The evolution of the IR luminosity function and dust-obscured star formation over the past 13 billion years. Astrophys. J. 909, 165 (2021).

    Article  Google Scholar 

  24. 24.

    McCracken, H. J. et al. UltraVISTA: a new ultra-deep near-infrared survey in COSMOS. Astron. Astrophys. 544, A156 (2012).

    Article  Google Scholar 

  25. 25.

    Jarvis, M. J. et al. The VISTA Deep Extragalactic Observations (VIDEO) survey. Mon. Not. R. Astron. Soc. 428, 1281–1295 (2013).

    Article  Google Scholar 

  26. 26.

    Erben, T. et al. CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wide observations. Astron. Astrophys. 493, 1197–1222 (2009).

    Article  Google Scholar 

  27. 27.

    Aihara, H. et al. First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publ. Astron. Soc. Jpn. 70, S8 (2018).

    MathSciNet  CAS  Google Scholar 

  28. 28.

    Bowler, R. A. A. et al. A lack of evolution in the very bright end of the galaxy luminosity function from z = 8 to 10. Mon. Not. R. Astron. Soc. 493, 2059–2084 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    Stefanon, M. et al. The brightest z 8 galaxies over the COSMOS UltraVISTA field. Astrophys. J. 883, 99 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Bowler, R. A. A., Dunlop, J. S., McLure, R. J. & McLeod, D. J. Unveiling the nature of bright z = 7 galaxies with the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 466, 3612–3635 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Schaerer, D. et al. The ALPINE-ALMA [C ii] survey. Little to no evolution in the [C ii]-SFR relation over the last 13 Gyr. Astron. Astrophys. 643, A3 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    De Looze, I. et al. The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types. Astron. Astrophys. 568, A62 (2014).

    Article  Google Scholar 

  33. 33.

    Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  Google Scholar 

  35. 35.

    Kroupa, P. & Boily, C. M. On the mass function of star clusters. Mon. Not. R. Astron. Soc. 336, 1188–1194 (2002).

    Article  Google Scholar 

  36. 36.

    Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).

    Article  Google Scholar 

  37. 37.

    Ferland, G. J. et al. The 2017 release Cloudy. Rev. Mexic. Astron. Astrof. 53, 385–438 (2017).

    CAS  ADS  Google Scholar 

  38. 38.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  Google Scholar 

  39. 39.

    Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, R. et al. Star formation and gas kinematics of quasar host galaxies at z ~ 6: new insights from ALMA. Astrophys. J. 773, 44 (2013).

    Article  Google Scholar 

  42. 42.

    Capak, P. L. et al. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission. Nature 522, 455–458 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Dessauges-Zavadsky, M. et al. The ALPINE-ALMA [C ii] survey. Molecular gas budget in the early Universe as traced by [C ii]. Astron. Astrophys. 643, A5 (2020).

    CAS  Article  Google Scholar 

  44. 44.

    Casey, C. M. Far-infrared spectral energy distribution fitting for galaxies near and far. Mon. Not. R. Astron. Soc. 425, 3094–3103 (2012).

    Article  Google Scholar 

  45. 45.

    Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0<z<4. Astron. Astrophys. 609, A30 (2018).

    Article  Google Scholar 

  46. 46.

    Faisst, A. L. et al. ALMA characterises the dust temperature of z ~ 5.5 star-forming galaxies. Mon. Not. R. Astron. Soc. 498, 4192–4204 (2020).

    CAS  Article  Google Scholar 

  47. 47.

    da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    Article  Google Scholar 

  48. 48.

    Laporte, N. et al. Dust in the reionization era: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. Lett. 837, L21 (2017).

    Article  Google Scholar 

  49. 49.

    Behrens, C. et al. Dusty galaxies in the epoch of reionization: simulations. Mon. Not. R. Astron. Soc. 477, 552–565 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Liang, L. et al. On the dust temperatures of high-redshift galaxies. Mon. Not. R. Astron. Soc. 489, 1397–1422 (2019).

    CAS  Article  Google Scholar 

  51. 51.

    Sommovigo, L. et al. Warm dust in high-z galaxies: origin and implications. Mon. Not. R. Astron. Soc. 497, 956–968 (2020).

    CAS  Article  Google Scholar 

  52. 52.

    De Vis, P. et al. A systematic metallicity study of DustPedia galaxies reveals evolution in the dust-to-metal ratios. Astron. Astrophys. 623, A5 (2019).

    Article  Google Scholar 

  53. 53.

    Mancini, M. et al. Interpreting the evolution of galaxy colours from z = 8 to 5. Mon. Not. R. Astron. Soc. 462, 3130–3145 (2016).

    Article  Google Scholar 

  54. 54.

    Graziani, L. et al. The assembly of dusty galaxies at z ≥ 4: statistical properties. Mon. Not. R. Astron. Soc. 494, 1071–1088 (2020).

    CAS  Article  Google Scholar 

  55. 55.

    Gruppioni, C. et al. The Herschel PEP/HerMES luminosity function - I. Probing the evolution of PACS selected galaxies to z = 4. Mon. Not. R. Astron. Soc. 432, 23–52 (2013).

    Article  Google Scholar 

  56. 56.

    Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

    CAS  Article  Google Scholar 

  57. 57.

    Peebles, P. J. E. The Large-Scale Structure of the Universe (Princeton Univ. Press, 1980).

  58. 58.

    Barone-Nugent, R. L. et al. Measurement of galaxy clustering at z ~ 7.2 and the evolution of galaxy bias from 3.8 ~ z ~ 8 in the XDF, GOODS-S, and GOODS-N. Astrophys. J. 793, 17 (2014).

    Article  Google Scholar 

  59. 59.

    Adelberger, K. L. et al. The spatial clustering of star-forming galaxies at redshifts 1.4 < z < 3.5. Astrophys. J. 619, 697–713 (2005).

    CAS  Article  Google Scholar 

  60. 60.

    Qiu, Y. et al. Dependence of galaxy clustering on UV luminosity and stellar mass at z ~ 4–7. Mon. Not. R. Astron. Soc. 481, 4885–4894 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    Bhowmick, A. K. et al. Cosmic variance of z > 7 galaxies: prediction from BLUETIDES. Mon. Not. R. Astron. Soc. 496, 754–766 (2020).

    CAS  Article  Google Scholar 

  62. 62.

    Uzgil, B. D. et al. The ALMA spectroscopic survey in the HUDF: a search for [C ii] emitters at 6 ≤ z ≤ 8. Astrophys. J. 912, 67 (2021).

    CAS  Article  Google Scholar 

  63. 63.

    Whitaker, K. E. et al. The constant average relationship between dust-obscured star formation and stellar mass from z = 0 to z = 2.5. Astrophys. J. 850, 208 (2017).

    Article  Google Scholar 

  64. 64.

    Fudamoto, Y. et al. The ALPINE-ALMA [Cii] survey. Dust attenuation properties and obscured star formation at z ~ 4.4–5.8. Astron. Astrophys. 643, A4 (2020).

    CAS  Article  Google Scholar 

  65. 65.

    Béthermin, M. et al. Evolution of the dust emission of massive galaxies up to z = 4 and constraints on their dominant mode of star formation. Astron. Astrophys. 573, A113 (2015).

    Article  Google Scholar 

  66. 66.

    Scoville, N. et al. COSMOS: Hubble Space Telescope observations. Astrophys. J. Suppl. 172, 38–45 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Williams for helpful discussions. We acknowledge support from: the Swiss National Science Foundation through the SNSF Professorship grant 190079 (Y.F., P.A.O., L.B.); NAOJ ALMA Scientific Research Grant 2020-16B (Y.F.); TOP grant TOP1.16.057 (RJB, MS); the Nederlandse Onderzoekschool voor Astronomie (S.S.); STFC Ernest Rutherford Fellowship ST/S004831/1 (R. Smit) and ST/T003596/1 (R.B.); JSPS KAKENHI JP19K23462 and JP21H01129 (HI); European Research Council’s starting grant ERC StG-717001 (P.D., A.H., G.U.); the NWO’s VIDI grant 016.vidi.189.162 and the European Commission’s and University of Groningen’s CO-FUND Rosalind Franklin program (P.D.); the Amaldi Research Center funded by the MIUR program “Dipartimento di Eccellenza” CUP:B81I18001170001 (L.G., R. Schneider); the National Science Foundation MRI-1626251 (Y.L.); FONDECYT grant 1211951, “CONICYT+PCI+INSTITUTO MAX PLANCK DE ASTRONOMIA MPG190030” and “CONICYT+PCI+REDES 190194” (M.A.); ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) CE170100013 (E.d.C.); Australian Research Council Laureate Fellowship FL180100060 (T.N.); the ERC Advanced Grant INTERSTELLAR H2020/740120 (A.P., A.F.) and the Carl Friedrich von Siemens-Forschungspreis der Alexander von Humboldt-Stiftung Research Award (A.F.); the VIDI research program 639.042.611 (J.H.); JWST/NIRCam contract to the University of Arizona, NAS5-02015 (R.E.); ERC starting grant 851622 (IDL); the National Science Foundation under grant numbers AST-1614213, AST-1910107, and the Alexander von Humboldt Foundation through a Humboldt Research Fellowship for Experienced Researchers (D.R.). The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant no. 140. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

Author information

Affiliations

Authors

Contributions

Y.F. wrote the main part of the text, analysed the data and produced most of the figures. P.A.O. contributed text and led the SED fitting and data analysis. S.S. calibrated the ALMA data and produced images. M.S. performed detailed photometric measurements from the ground-based images. R.S. contributed comparison plots of different galaxy samples. All co-authors contributed to the successful execution of the ALMA program, to the scientific interpretation of the results, and helped to write up this manuscript.

Corresponding author

Correspondence to Y. Fudamoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Marcel Neeleman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Optical/NIR images and full SEDs of the UV-luminous targets REBELS-29 and REBELS-12.

The cutouts show images from which photometry was extracted. SED fits (bottom-right panels) are performed using the BAGPIPES33. In b and d, blue solid lines and bands represent the median posterior SEDs together with their 68% confidence contours for REBELS-29 and REBELS-12, respectively. Error bars corresponds to 1σ uncertainties, and downward arrows show 2σ upper limits. a and c show that the [C ii] 158 μm emission line redshifts (red) are in perfect agreement with the photometric redshift probability distributions (blue), that had been previously estimated from the optical/NIR photometry for both sources. This confirms their high-redshift nature.

Extended Data Fig. 2 Optical/NIR/FIR cutouts of the dusty sources REBELS-29-2 and REBELS-12-2.

\({6.5}^{{\prime\prime} }\times {6.5}^{{\prime\prime} }\) cutouts show the existing ground- and space-based observations: Subaru Hyper Suprime Cam, VISTA VIRCAM, Spitzer IRAC, in addition to the ALMA dust continuum images and continuum subtracted [C ii] 158 μm moment-0 images. White contours show \(+2,+3,+4,+5\,\sigma \) (solid contour) and \(-5,-4,-3,-2\,\sigma \) (dashed contour), if present. A faint low-surface brightness foreground neighbour can be seen \( \sim {2.0}^{{\prime\prime} }\) to the SE of REBELS-29-2. However, the photometric redshift of this foreground source is \({z}_{{\rm{ph}}}={2.46}_{-0.07}^{+0.08}\), and the line frequency of REBELS-29-2 is not consistent with bright FIR emission lines (for example, CO lines) from this foreground redshift. No optical counterparts are found at the location of the ALMA [C ii] and dust continuum positions for both REBELS-29-2 and REBELS-12-2.

Extended Data Fig. 3 Probing a new parameter space of DSFGs.

a, The stellar mass as a function of redshift for DSFGs from the literature. IRAC-selected, H-dropout galaxies (light-grey dots with 1σ errorbars15) are generally more massive than the two serendipitously detected REBELS galaxies (red dots). Additionally, the redshifts of H-dropouts are extremely uncertain (photo-z). The extremely star-bursting SMG population only shows a small tail of rare sources at z > 4 (shown by dark dots11). The blue squares show all the previously known DSFGs at z > 5.5 with spectroscopically measured redshifts, while purple squares correspond to z ≈ 6 QSO companion galaxies13. These are more extreme sources than REBELS-12-2 and REBELS-29-2. b, The infrared luminosity/SFRIR as a function of redshift for the same galaxy samples as on the left. The infrared luminosities and hence SFRs of the newly identified galaxies are substantially lower than typical SMGs at these redshifts. For both panels, error bars correspond to 1σ uncertainties, and arrows show 2σ upper/lower limits.

Extended Data Fig. 4 Fraction of obscured star-formation as a function of stellar mass.

The fraction of obscured star-formation, \({f}_{{\rm{obs}}}={{\rm{SFR}}}_{{\rm{IR}}}/({{\rm{SFR}}}_{{\rm{IR}}}+{{\rm{SFR}}}_{{\rm{UV}}})\), of REBELS-29-2 and REBELS-12-2 (dark coloured squares) is significantly higher than for typical LBGs at their stellar mass. The line shows the observed, constant relation between z ≈ 0 and z ≈ 2.5 (ref. 63) assuming a given set of SED templates from Bethermin and colleagues65. Blue and brown small points with error bars show stacked results of star-forming galaxies at z ≈ 4.5 and at z ≈ 5.5, respectively64. The star-formation of extreme starburst galaxies at z ≈ 5.7–6.9 is essentially 100% obscured (SMGs;12 green small points). The highly obscured star-forming galaxies found as companions of high-redshift quasars at z > 6 (refs. 13,14) (yellow diamonds) are substantially more massive than the galaxies identified here, as estimated from their dynamical masses. Squares show the obscured fraction of our UV-bright and dusty galaxies. Error bars correspond to 1σ uncertainty, and arrows show 2σ lower/upper limits. Our discovery of lower mass, obscured galaxies shows that fobs is likely to vary much more strongly at a fixed stellar mass than previously estimated even in the epoch of reionization.

Extended Data Table 1 FIR properties observed by ALMA
Extended Data Table 2 NIR photometric data
Extended Data Table 3 Priors used for panchromatic SED modelling

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fudamoto, Y., Oesch, P.A., Schouws, S. et al. Normal, dust-obscured galaxies in the epoch of reionization. Nature 597, 489–492 (2021). https://doi.org/10.1038/s41586-021-03846-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing