Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of charge recombination to triplet excitons in organic solar cells


The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%1. However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%2. A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps3, owing to non-radiative recombination4. For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend5, this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Triplet formation pathways and organic solar cell materials.
Fig. 2: Spectroscopic investigations of triplet formation in model NFA blends.
Fig. 3: The role of hybridization in organic solar cell blends.

Data availability

The data that support the plots within this paper and other findings of this study are available at the University of Cambridge Repository (


  1. 1.

    Liu, Q. et al. 18% efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020).

    CAS  Article  Google Scholar 

  2. 2.

    Green, M. A. et al. Solar cell efficiency tables (version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020).

    Article  Google Scholar 

  3. 3.

    Liu, S. et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photon. 14, 300–305 (2020).

    CAS  Article  ADS  Google Scholar 

  4. 4.

    Menke, S. M., Ran, N. A., Bazan, G. C. & Friend, R. H. Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule 2, 25–35 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Article  ADS  Google Scholar 

  7. 7.

    Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    CAS  Article  ADS  Google Scholar 

  8. 8.

    Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  ADS  CAS  Google Scholar 

  9. 9.

    Lee, J. et al. Design of nonfullerene acceptors with near-infrared light absorption capabilities. Adv. Energy Mater. 8, 1801209 (2018).

    Article  CAS  Google Scholar 

  10. 10.

    Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  11. 11.

    Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  12. 12.

    Zhou, Z. et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 32, 1906324 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    Li, S., Li, C., Shi, M. & Chen, H. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 5, 1554–1567 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    Yuan, J. et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem 6, 2147–2161 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Vandewal, K., Mertens, S., Benduhn, J. & Liu, Q. The cost of converting excitons into free charge carriers in organic solar cells. J. Phys. Chem. Lett. 11, 129–135 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Geffroy, B., le Roy, P. & Prat, C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Classen, A. et al. The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nat. Energy 5, 711–719 (2020).

    CAS  Article  ADS  Google Scholar 

  18. 18.

    Eisner, F. D. et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc. 141, 6362–6374 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Chen, X.-K., Coropceanu, V. & Brédas, J.-L. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat. Commun. 9, 5295 (2018).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  20. 20.

    Wang, J., Chepelianskii, A., Gao, F. & Greenham, N. C. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nat. Commun. 3, 1191 (2012).

    PubMed  Article  ADS  CAS  Google Scholar 

  21. 21.

    Chen, X.-K., Wang, T. & Brédas, J.-L. Suppressing energy loss due to triplet exciton formation in organic solar cells: the role of chemical structures and molecular packing. Adv. Energy Mater. 7, 1602713 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    CAS  PubMed  Article  ADS  Google Scholar 

  23. 23.

    Kraffert, F. et al. Charge separation in PCPDTBT:PCBM blends from an EPR perspective. J. Phys. Chem. C 118, 28482–28493 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Köhler, A. & Beljonne, D. The singlet–triplet exchange energy in conjugated polymers. Adv. Funct. Mater. 14, 11–18 (2004).

    Article  CAS  Google Scholar 

  25. 25.

    Hodgkiss, J. M. et al. Exciton-charge annihilation in organic semiconductor films. Adv. Funct. Mater. 22, 1567–1577 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Benduhn, J. et al. Impact of triplet excited states on the open-circuit voltage of organic solar cells. Adv. Energy Mater. 8, 1800451 (2018).

    Article  CAS  Google Scholar 

  27. 27.

    Cohen, A. E. Nanomagnetic control of intersystem crossing. J. Phys. Chem. A 113, 11084–11092 (2009).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  28. 28.

    Shoaee, S. et al. Decoding charge recombination through charge generation in organic solar cells. Sol. RRL 3, 1900184 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Dimitrov, S. D. et al. Polaron pair mediated triplet generation in polymer/fullerene blends. Nat. Commun. 6, 6501 (2015)

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  30. 30.

    Salvadori, E. et al. Ultra-fast spin-mixing in a diketopyrrolopyrrole monomer/fullerene blend charge transfer state. J. Mater. Chem. A 5, 24335–24343 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Menke, S. M. et al. Limits for recombination in a low energy loss organic heterojunction. ACS Nano 10, 10736–10744 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Xue, L. et al. Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells. Adv. Mater. 29, 1703344 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Chow, P. C. Y., Gélinas, S., Rao, A. & Friend, R. H. Quantitative bimolecular recombination in organic photovoltaics through triplet exciton formation. J. Am. Chem. Soc. 136, 3424–3429 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Di Nuzzo, D. et al. Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell. Adv. Mater. 22, 4321–4324 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. 35.

    Karuthedath, S. et al. Buildup of triplet-state population in operating TQ1:PC71BM devices does not limit their performance. J. Phys. Chem. Lett. 11, 2838–2845 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Wang, R. et al. Charge separation from an intra-moiety intermediate state in the high-performance PM6:Y6 organic photovoltaic blend. J. Am. Chem. Soc. 142, 12751–12759 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Gelinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  38. 38.

    Jakowetz, A. C. et al. Visualizing excitations at buried heterojunctions in organic semiconductor blends. Nat. Mater. 16, 551–557 (2017).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  39. 39.

    Menke, S. M. et al. Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss. Nat. Commun. 9, 277 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  40. 40.

    Burke, T. M., Sweetnam, S., Vandewal, K. & McGehee, M. D. Beyond langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv. Energy Mater. 5, 1500123 (2015).

    Article  CAS  Google Scholar 

  41. 41.

    Hosseini, S. M. et al. Putting order into PM6:Y6 solar cells to reduce the Langevin recombination in 400 nm thick junction. Sol. RRL 4, 2000498 (2020).

    CAS  Article  Google Scholar 

  42. 42.

    Karki, A. et al. Understanding the high performance of over 15% efficiency in single-junction bulk heterojunction organic solar cells. Adv. Mater. 31, 1903868 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Niklas, J. et al. Highly-efficient charge separation and polaron delocalization in polymer-fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study. Phys. Chem. Chem. Phys. 15, 9562–9574 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Richert, S., Tait, C. E. & Timmel, C. R. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy. J. Magn. Reson. 280, 103–116 (2017).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  45. 45.

    Thomson, S. A. J. et al. Charge separation and triplet exciton formation pathways in small molecule solar cells as studied by time-resolved EPR spectroscopy. J. Phys. Chem. C 121, 22707–22719 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Hintze, C., Steiner, U. E. & Drescher, M. Photoexcited triplet state kinetics studied by electron paramagnetic resonance spectroscopy. ChemPhysChem 18, 6–16 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    CAS  Article  ADS  Google Scholar 

  48. 48.

    Kubas, A. et al. Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations. II. Phys. Chem. Chem. Phys. 17, 14342–14354 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Chang, W. et al. Spin-dependent charge transfer state design rules in organic photovoltaics. Nat. Commun. 6, 6415 (2015).

    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

  50. 50.

    Street, R. A., Song, K. W., Northrup, J. E. & Cowan, S. Photoconductivity measurements of the electronic structure of organic solar cells. Phys. Rev. B 83, 165207 (2011).

    Article  ADS  CAS  Google Scholar 

  51. 51.

    Rasaiah, J. C., Hubbard, J. B., Rubin, R. J. & Lee, S. H. Kinetics of bimolecular recombination processes with trapping. J. Phys. Chem. 94, 652–662 (1990).

    CAS  Article  Google Scholar 

  52. 52.

    Lee, J. et al. Bandgap narrowing in non-fullerene acceptors: single atom substitution leads to high optoelectronic response beyond 1000 nm. Adv. Energy Mater. 8, 1801212 (2018).

    Article  CAS  Google Scholar 

  53. 53.

    de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

  54. 54.

    Lee, C.-L., Yang, X. & Greenham, N. C. Determination of the triplet excited-state absorption cross section in a polyfluorene by energy transfer from a phosphorescent metal complex. Phys. Rev. B 76, 245201 (2007).

    Article  ADS  CAS  Google Scholar 

  55. 55.

    Biskup, T. Structure-function relationship of organic semiconductors: detailed insights from time-resolved EPR spectroscopy. Front Chem. 7, 10 (2019).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  56. 56.

    Weber, S. Transient EPR. eMagRes 6, 255–270 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Niklas, J. & Poluektov, O. G. Charge transfer processes in OPV materials as revealed by EPR spectroscopy. Adv. Energy Mater. 7, 1602226 (2017).

    Article  CAS  Google Scholar 

  58. 58.

    Righetto, M. et al. Engineering interactions in QDs-PCBM blends: a surface chemistry approach. Nanoscale 10, 11913–11922 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Franco, L. et al. Time-resolved EPR of photoinduced excited states in a semiconducting polymer/PCBM blend. J. Phys. Chem. C 117, 1554–1560 (2013).

    CAS  Article  Google Scholar 

  60. 60.

    Buckley, C. D., Hunter, D. A., Hore, P. J. & McLauchlan, K. A. Electron spin resonance of spin-correlated radical pairs. Chem. Phys. Lett. 135, 307–312 (1987).

    CAS  Article  ADS  Google Scholar 

  61. 61.

    Hore, P. J., Hunter, D. A., McKie, C. D. & Hoff, A. J. Electron paramagnetic resonance of spin-correlated radical pairs in photosynthetic reactions. Chem. Phys. Lett. 137, 495–500 (1987).

    CAS  Article  ADS  Google Scholar 

  62. 62.

    Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    CAS  PubMed  Article  ADS  Google Scholar 

Download references


A.J.G. and R.H.F. acknowledge support from the Simons Foundation (grant number 601946) and the EPSRC (EP/M01083X/1 and EP/M005143/1). This project has received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 670405). A.K. and T.-Q.N. were supported by the Department of the Navy, Office of Naval Research award number N00014-21-1-2181. A.K. acknowledges funding by the Schlumberger foundation. A.Privitera, R.D., A.Pershin, G.L., M.K.R. and D.B. were supported by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska Curie grant agreement number 722651 (SEPOMO project). Computational resources in Mons were provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (FRS-FNRS) under grant number 2.5020.11, as well as the Tier-1 supercomputer of the Fedération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under grant agreement number 1117545. D.B. is a FNRS Research Director. F.G. acknowledges the Stiftelsen för Strategisk Forskning through a Future Research Leader programme (FFL18-0322). Transient electron paramagnetic resonance measurements were performed in the Centre for Advanced ESR (CAESR) in the Department of Chemistry at the University of Oxford, and this work was supported by the EPSRC (EP/L011972/1). We thank T. Biskup and A. Sperlich for their assistance with simulation and interpretation of the transient electron paramagnetic resonance data.

Author information




A.J.G., T.-Q.N. and R.H.F. conceived the work. A.J.G. performed the transient absorption measurements. A.Privitera and W.K.M. conducted the transient electron paramagnetic resonance measurements. R.D., A.Pershin and G.L. carried out the quantum chemical calculations. A.K., D.Q., J.Y. and S.-J.K. fabricated and tested the organic solar cell devices. A.J.G. and J.Y. performed the photoluminescence quantum efficiency measurements. J.L. synthesized SiOTIC-4F and the IEICO derivatives. M.K.R., F.G., G.C.B., T.-Q.N, D.B. and R.H.F. supervised their group members involved in the project. A.J.G., A.R. and R.H.F. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Alexander J. Gillett, Thuc-Quyen Nguyen, David Beljonne or Richard H. Friend.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Till Biskup, Yingping Zou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, including Supplementary Figs. 1–70, Supplementary Tables 1–3 and Supplementary References – see contents page for details.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gillett, A.J., Privitera, A., Dilmurat, R. et al. The role of charge recombination to triplet excitons in organic solar cells. Nature 597, 666–671 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links