Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles


The early evolution of diapsid reptiles is marked by a deep contrast between our knowledge of the origin and early evolution of archosauromorphs (crocodiles, avian and non-avian dinosaurs) to that of lepidosauromorphs (squamates (lizards, snakes) and sphenodontians (tuataras)). Whereas the former include hundreds of fossil species across various lineages during the Triassic period1, the latter are represented by an extremely patchy early fossil record comprising only a handful of fragmentary fossils, most of which have uncertain phylogenetic affinities and are confined to Europe1,2,3. Here we report the discovery of a three-dimensionally preserved reptile skull, assigned as Taytalura alcoberi gen. et sp. nov., from the Late Triassic epoch of Argentina that is robustly inferred phylogenetically as the earliest evolving lepidosauromorph, using various data types and optimality criteria. Micro-computed tomography scans of this skull reveal details about the origin of the lepidosaurian skull from early diapsids, suggesting that several traits traditionally associated with sphenodontians in fact originated much earlier in lepidosauromorph evolution. Taytalura suggests that the strongly evolutionarily conserved skull architecture of sphenodontians represents the plesiomorphic condition for all lepidosaurs, that stem and crown lepidosaurs were contemporaries for at least ten million years during the Triassic, and that early lepidosauromorphs had a much broader geographical distribution than has previously been thought.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Holotype of T. alcoberi (PVSJ 698).
Fig. 2: Combined-evidence Bayesian-inference phylogenetic analysis and morphospace occupation.

Data availability

Computed tomography scan data, including surface volume files of the holotype, all morphological and molecular data generated and analysed, along with trees and log files described in the Article are available online as 'Supplementary Data 1' at Harvard Dataverse (

Code availability

The MrBayes commands for Bayesian analyses are provided as ‘Supplementary Data 2’ and R scripts for reproducing the morphospace analyses and figures are available as the file ‘Supplementary Data 3’, both at Harvard Dataverse (


  1. 1.

    Sues, H. D. The Rise of Reptiles: 320 Million Years of Evolution (John Hopkins Univ. Press, 2019).

  2. 2.

    Simões, T. R. & Caldwell, M. W. in Encyclopedia of Geology 2nd ed., vol. 3 (eds Alderton, D. & Elias, S. A.) 165–174 (Academic, 2021).

  3. 3.

    Simões, T. R. & Pyron, R. A. The squamate tree of life. Bull. Mus. Comp. Zool. 163, 47–95 (2021).

    Article  Google Scholar 

  4. 4.

    Uetz, P. & Hošek, J. The Reptile Database (2021).

  5. 5.

    Gill, F., Donsker, D. & Rasmussen, F. IOC World Bird List (v.11.1) (2021).

  6. 6.

    Simões, T. R., Apesteguía, S., Hsiou, A. S. & Daza, J. D. Lepidosaurs from Gondwana: an introduction. J. Herpetol. 51, 297–299 (2017).

    Article  Google Scholar 

  7. 7.

    Sues, H.-D. & Kligman, B. T. A new lizard-like reptile from the Upper Triassic (Carnian) of Virginia and the Triassic record of Lepidosauromorpha (Diapsida, Sauria). J. Vert. Paleontol. 40, e1879102 (2021).

    Article  Google Scholar 

  8. 8.

    Schoch, R. R. & Sues, H.-D. A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic relationships. J. Vertebr. Paleontol. 38, e1444619 (2018).

    Article  Google Scholar 

  9. 9.

    Evans, S. E. & Borsuk-Białynicka, M. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontol. Pol. 65, 179–202 (2009).

    Google Scholar 

  10. 10.

    Romo De Vivar, P. R., Martinelli, A. G., Fonseca, P. H. M. & Soares, M. B. To be or not to be: the hidden side of Cargninia enigmatica and other puzzling remains of Lepidosauromorpha from the Upper Triassic of Brazil. J. Vert. Paleontol. 40, e1828438 (2020).

    Article  Google Scholar 

  11. 11.

    Cavicchini, I., Zaher, M. & Benton, M. J. An enigmatic neodiapsid reptile from the Middle Triassic of England. J. Vertebr. Paleontol. 40, e1781143 (2020).

    Article  Google Scholar 

  12. 12.

    Sobral, G., Simões, T. R. & Schoch, R. R. A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna. Sci. Rep. 10, 2273 (2020).

    CAS  Article  ADS  Google Scholar 

  13. 13.

    Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    Article  ADS  Google Scholar 

  14. 14.

    Simões, T. R., Vernygora, O., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 11, 3322 (2020).

    Article  ADS  Google Scholar 

  15. 15.

    Simões, T. R., Caldwell, M. W. & Pierce, S. E. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol. 18, 191 (2020).

    Article  Google Scholar 

  16. 16.

    Scheyer, T. M. et al. Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. R. Soc. Open Sci. 7, 192179 (2020).

    Article  ADS  Google Scholar 

  17. 17.

    Hsiou, A. S., De França, M. A. G. & Ferigolo, J. New data on the Clevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil. PLoS ONE 10, e0137523 (2015).

    Article  Google Scholar 

  18. 18.

    Fraser, N. C. The osteology and relationships of Clevosaurus (Reptilia: Sphenodontida). Phil. Trans. R. Soc. Lond. B 321, 125–178 (1988).

    Article  ADS  Google Scholar 

  19. 19.

    Martinez, R. N. et al. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science 331, 206–210 (2011).

    CAS  Article  ADS  Google Scholar 

  20. 20.

    Garberoglio, F. F. et al. New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Sci. Adv. 5, eaax5833 (2019).

    Article  ADS  Google Scholar 

  21. 21.

    Bittencourt, J. S., Simões, T. R., Caldwell, M. W. & Langer, M. C. Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates. Commun. Biol. 3, 201 (2020).

    CAS  Article  Google Scholar 

  22. 22.

    Bertin, T. J. C., Thivichon-Prince, B., LeBlanc, A. R. H., Caldwell, M. W. & Viriot, L. Current perspectives on tooth implantation, attachment, and replacement in Amniota. Front. Physiol. 9, 1630 (2018).

    Article  Google Scholar 

  23. 23.

    Fraser, N. C. A new rhynchocephalian from the British Upper Trias. Palaeontology 25, 709–725 (1982).

    Google Scholar 

  24. 24.

    Evans, S. E. The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zool. J. Linn. Soc. 70, 203–264 (1980).

    Article  Google Scholar 

  25. 25.

    Whiteside, D. I. The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil. Phil. Trans. R. Soc. Lond. B 312, 379–430 (1986).

    Article  ADS  Google Scholar 

  26. 26.

    Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328 (2017).

    Article  Google Scholar 

  27. 27.

    Gemmell, N. J. et al. The tuatara genome reveals ancient features of amniote evolution. Nature 584, 403–409 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013).

    Article  Google Scholar 

  29. 29.

    Hsiou, A. S. et al. A new clevosaurid from the Triassic (Carnian) of Brazil and the rise of sphenodontians in Gondwana. Sci. Rep. 9, 11821 (2019).

    Article  ADS  Google Scholar 

  30. 30.

    Vernygora, O. V., Simões, T. R. & Campbell, E. O. Evaluating the performance of probabilistic algorithms for phylogenetic analysis of big morphological datasets: a simulation study. Syst. Biol. 69, 1088–1105 (2020).

    Article  Google Scholar 

  31. 31.

    Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis, version 3.04, (2015).

  32. 32.

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  33. 33.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

  34. 34.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).

  35. 35.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  36. 36.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

    CAS  Article  ADS  Google Scholar 

  38. 38.

    Sutherland, J., Flannery, T., Moon, B. C., Stubbs, T. L. & Benton, M. J. Does exceptional preservation distort our view of disparity in the fossil record? Proc. R. Soc. Lond. Biol. Sci. 286, 20190091 (2019).

    Google Scholar 

  39. 39.

    Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article  Google Scholar 

  40. 40.

    Gerber, S. Use and misuse of discrete character data for morphospace and disparity analyses. Palaeontology 62, 305–319 (2019).

    Article  Google Scholar 

  41. 41.

    Cisneros, J. C. & Ruta, M. Morphological diversity and biogeography of procolophonids (Amniota: Parareptilia). J. Syst. Palaeontology 8, 607–625 (2010).

    Article  Google Scholar 

  42. 42.

    Ciampaglio, C. N., Kemp, M. & McShea, D. W. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27, 695–715 (2001).

    Article  Google Scholar 

  43. 43.

    Martinez, R., Simões, T. R., Sobral, G. & Apesteguía, S. Supplementary Data for “A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles” Harvard Dataverse (2021).

Download references


R.N.M. thanks the Secretaría de Ciencia, Técnica e Innovación of San Juan (SECITI) and the field crew and EarthWatch volunteers of 2001 fieldwork. T.R.S. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for providing a postdoctoral fellowship. We thank J. Antonio González for his line reconstruction of Taytalura skull and jaw and J. Blanco for his artwork of Taytalura.

Author information




R.N.M. led the project, and conducted fieldwork and specimen preparation. T.R.S. conducted phylogenetic and morphospace analyses. G.S. performed CT scan data segmentation. T.R.S., G.S. and S.A. produced the figures. All authors contributed to interpretation of the results, discussions and manuscript writing.

Corresponding authors

Correspondence to Ricardo N. Martínez or Tiago R. Simões.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Hans-Dieter Sues and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Location and geology of the Ischigualasto–Villa Unión Basin.

a, Geologic map of the southern outcrops of the Ischigualasto–Villa Unión Basin. b, Stratigraphic section of the Ischigualasto Formation. Black star indicates the type locality of PVSJ 698. Black line indicates the location of the stratigraphic section.

Extended Data Fig. 2 Cranial anatomy of T. alcoberi on the basis of segmented micro-computed tomography scan data.

a, b, Three-dimensional model of Taytalura with segmented bones in right lateral and ventral views. c, Segmented right squamosal and quadrate in lateral view (left) and corresponding line drawing (right). d, Segmented left quadrate in posterior view. e, f, Line drawings of the left jaw in medial and dorsal views. af, adductor fossa; ap, anterior process; ar, articular; bc, braincase; co, coronoid; dp, dorsal process, fr, frontal; gf, glenoid fossa; hy, hyoid arch; ju, jugal; lc, lateral condyle, lj, lower jaw; mc, medial condyle, mf, medial flange; mx, maxilla; na, nasal; oc, otic conch; pa, parietal; pm, pre-maxilla; pl, palate; po, post-orbital; pof, post-frontal; pr, pre-artciular; prf, pre-frontal; qd, quadrate; qj, quadrato-jugal; sp., splenial; sq, squamosal; vp, ventral process. Scale bars, 3.5 mm.

Extended Data Fig. 3 Further details of cranial anatomy of T. alcoberi on the basis of segmented micro-computed tomography scan data.

a, b, Segmented palate in right lateral and left dorsolateral views. c, Segmented right posterior half of the braincase with stapes in red in lateral view. d, Segmented left posterior half of the braincase in lateral view. e, f, Segmented anterior region of the braincase in left lateral and anterior views. ap, ascending process; bc, braincase; bp, basipterygoid process; CN, cranial nerve; cp, cultriform process; cr, raised crest formed by the pterygoids meeting medially; clp, clinoid process; crp, crista prootica; ds, dorsum sella; ec, ectopterygoid; ep, epipterygoid; fo, fenestra ovalis; hf, hypophyseal fossa; lf, lateral flange; oc, otic conch; os, orbitosphenoid; pa, palatine; pp, paroccipital process; qw, quadrate wing; rc, recess; st, stapes. Roman numerals indicate corresponding cranial nerves. Scale bars, 3.5 mm (a, b), 1.5 mm (cf).

Extended Data Fig. 4 Cranial anatomy of T. alcoberi on the basis of 2D cross-sectional slices from micro-computed tomography scan data.

a–c, Transverse cross sections of the skull showing the paired nasals (a), frontals (b) and parietals (c). d, Longitudinal cross-section of the paired frontals. e, Transverse cross section of the left lower and upper jaws in anterior view, showing labial and lingual walls of the tooth grooves of the maxilla and dentary. f, Transverse cross section of the posterior region of the skull through the braincase and the left lower jaw in anterior view. g, Transverse cross section of the left maxilla, showing the replacement tooth going into position. h, Longitudinal cross-section of the left dentary in occlusal view. i, j, Longitudinal cross section of the anterior (i) and posterior (j) sectors of the right maxilla in occlusal view. In hi, the absence of the interdental ridges and less dense attachment tissue (alveolar bone and/or cementum) in the interdental space of the anterior dentition is shown, whereas j shows the direct contact between the posterior teeth and the absence of interdental space. Planes of the sections in the corresponding details. ac, adductor crest; alv.t., alveolar tissue; de, dentary; mx, maxilla; na, nasals; f-f, inter-frontal suture; fr, frontals; la, labial wall; li, lingual wall; ot, otolith; pa, parietals; pof, post-frontal; prf, pre-frontal; rp, resorption pit; rt, replacement tooth; to, tooth. Scale bars, 1.5 mm (a), 1 mm (be, hj), 2.5 mm (f), 2 mm (g).

Extended Data Fig. 5 Skull and jaw of T. alcoberi.

ad, Photographs of PVSJ 698 in dorsal (a), ventral (b), left lateral (c) and right lateral (d) views. eh, Reconstruction of the skull of T. alcoberi in dorsal (e), ventral (f), anterior (g) and left lateral (h) views (reconstructed on the basis of information from both sides). ik, Reconstruction of the lower jaw of T. alcoberi in lateral (i), medial (j) and occlusal (k) views. d, dentary; ec, ectopterygoid; fr, frontal; ju, jugal; mx, maxilla; na, nasal; pa, parietal; pm, pre-maxilla; pl, palatine; po, post-orbital; pof, post-frontal; prf, pre-frontal; pt, pterygoid; qd, quadrate; qj, quadrato-jugal; sq, squamosal; Scale bar, 10 mm.

Extended Data Fig. 6 Phylogenetic analyses using morphological data only, including data from all species.

a, Equal weights maximum parsimony analysis. Strict consensus of 602 most parsimonious trees (2,481 steps each). b, Bayesian inference analysis. Majority rule consensus tree. Numbers at nodes indicate posterior probabilities.

Extended Data Fig. 7 Bayesian inference phylogenetic analysis of combined morphological and molecular data, including data from all species.

Maximum compatibility tree (illustrating all nodes, including those with very low support). Numbers at nodes indicate posterior probabilities.

Extended Data Fig. 8 Phylogenetic analyses using morphological data only, with data from the rogue taxon (Vellbergia) removed.

a, Equal weights maximum parsimony analysis. Strict consensus of 572 most parsimonious trees (2,480 steps each). b, Bayesian inference analysis. Majority rule consensus tree. Numbers at nodes indicate posterior probabilities.

Extended Data Fig. 9 Bayesian inference phylogenetic analysis of combined morphological and molecular data, with data from the rogue taxon (Vellbergia) removed.

Majority rule consensus tree. Numbers at nodes indicate posterior probabilities.

Extended Data Fig. 10 Morphospace occupation by early diapsid reptiles and lepidosauromorphs, with the first 10 pairwise principal coordinate comparisons illustrated.

PC1 distinguishes squamates from all other groups when contrasted against all other principal coordinates (red), whereas PC3 distinguishes sphenodontians from all other groups when contrasted against all other principal coordinates (cyan). Major clades of interest are highlighted within convex hulls: squamatans (yellow), sphenodontians (light green), early lepidosaurs of uncertain placement (blue), all other diapsids (purple) and Taytalura (turquoise). For individual taxon names for each data point and relative contribution of each principal coordinate, see supplementary data files at Harvard Dataverse (‘Data availability’ in Methods).

Supplementary information

Supplementary Information

This file contains Geological and paleontological settings, Description of Taytahura alcoberi, Historical overview of lepidosauromorph classification, Additional taxa added to phylogenetic dataset, Synapomorphies Supplementary References.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez, R.N., Simões, T.R., Sobral, G. et al. A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles. Nature 597, 235–238 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing