Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reply to: Spatial scale and the synchrony of ecological disruption

The Original Article was published on 24 November 2021

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Abrupt exposure is a general pattern and not an artefact of homogenizing mountain regions.

Data availability

Elevation data are publicly available from https://www.ngdc.noaa.gov/mgg/global/. Code and data to reproduce Fig. 1 are available at Figshare (https://doi.org/10.6084/m9.figshare.14730501).

References

  1. Colwell, R. K. Spatial scale and the synchrony of ecological disruption. Nature https://doi.org/10.1038/s41586-021-03760-4 (2021).

  2. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  ADS  CAS  Google Scholar 

  3. Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    Article  Google Scholar 

  4. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article  ADS  CAS  Google Scholar 

  5. Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).

    Article  Google Scholar 

  6. Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    Article  ADS  CAS  Google Scholar 

  7. Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Glob. Change Biol. 23, 12–24 (2017).

    Article  ADS  Google Scholar 

  8. Stewart, S. B. et al. Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species. Ecography 44, 626–639 (2021).

    Article  Google Scholar 

  9. Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article  ADS  Google Scholar 

  10. McKechnie, A. E. & Wolf, B. O. The Physiology of Heat Tolerance in Small Endotherms. Physiology 34, 302–313 (2019).

    Article  CAS  Google Scholar 

  11. Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article  Google Scholar 

  12. Mahony, C. R. & Cannon, A. J. Wetter summers can intensify departures from natural variability in a warming climate. Nat. Commun. 9, 783 (2018).

    Article  ADS  Google Scholar 

  13. Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).

    Article  Google Scholar 

  14. Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).

    Article  CAS  Google Scholar 

  15. Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    Article  Google Scholar 

  16. Genin, A., Levy, L., Sharon, G., Raitsos, D. E. & Diamant, A. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl Acad. Sci. USA 117, 25378–25385 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  ADS  Google Scholar 

  18. Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).

    Article  ADS  Google Scholar 

  19. Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article  ADS  CAS  Google Scholar 

  20. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    Article  ADS  Google Scholar 

  22. Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article  Google Scholar 

  23. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article  ADS  CAS  Google Scholar 

  24. Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    Article  Google Scholar 

  26. NOAA National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. Accessed 10.05.2021.

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.L.P., C.H.T. and C.M. contributed to writing the manuscript.

Corresponding author

Correspondence to Alex L. Pigot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trisos, C.H., Merow, C. & Pigot, A.L. Reply to: Spatial scale and the synchrony of ecological disruption. Nature 599, E11–E13 (2021). https://doi.org/10.1038/s41586-021-03760-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03760-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing