Accelerated Article Preview

BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants

Received: 19 May 2021

Accepted: 4 June 2021

Accelerated Article Preview Published online 10 June 2021

Cite this article as: Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. *Nature* https://doi.org/10.1038/s41586-021-03693-y (2021).

Jianying Liu, Yang Liu, Hongjie Xia, Jing Zou, Scott C. Weaver, Kena A. Swanson, Hui Cai, Mark Cutler, David Cooper, Alexander Muik, Kathrin U. Jansen, Ugur Sahin, Xuping Xie, Philip R. Dormitzer & Pei-Yong Shi

This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants

https://doi.org/10.1038/s41586-021-03693-y

Received: 19 May 2021

Accepted: 4 June 2021

Published online: 10 June 2021

Jianying Liu^{1,2,9}, Yang Liu^{3,9}, Hongjie Xia³, Jing Zou³, Scott C. Weaver^{1,2,4,5,6}, Kena A. Swanson⁷ Hui Cai⁷, Mark Cutler⁷, David Cooper⁷, Alexander Muik⁸, Kathrin U. Jansen⁷, Ugur Sahin⁸, Xuping Xie^{3⊠}, Philip R. Dormitzer^{7™} & Pei-Yong Shi^{2,3,4,5,6™}

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve around the world, generating new variants that are of concern based on their potential for altered transmissibility, pathogenicity, and coverage by vaccines and therapeutics¹⁻⁵. Here we report that 20 human sera, drawn 2 or 4 weeks after two doses of BNT162b2, neutralize engineered SARS-CoV-2 with a USA-WA1/2020 genetic background (a virus strain isolated in January 2020) and spike glycoproteins from the newly emerged B.1.617.1, B.1.617.2, B.1.618 (all first identified in India) or B.1.525 (first identified in Nigeria) lineages. Geometric mean plaque reduction neutralization titers against the variant viruses, particularly the B.1.617.1 variant, appear lower than the titer against USA-WA1/2020 virus, but all sera tested neutralize the variant viruses at titers of at least 40. The susceptibility of these newly emerged variants to BNT162b2 vaccine-elicited neutralization supports mass immunization as a central strategy to end the coronavirus disease 2019 (COVID-19) pandemic across geographies.

Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused >160 million infections with >3.3 million deaths due to coronavirus disease 2019 (COVID-19) worldwide (https://coronavirus.jhu.edu/). Although coronaviruses have a proofreading mechanism to maintain their long genomic RNAs⁶, mutations have continuously emerged in the circulating viruses. Because the viral spike protein (S) binds to angiotensin-converting enzyme 2 (ACE2), the cellular receptor for virus attachment, and mediates membrane fusion during viral entry, mutations in spike can alter SARS-CoV-2 transmission, tissue tropism, and disease outcome⁷. Indeed, the first prevalent spike mutation, D614G, promotes spike binding to ACE2, leading to enhanced SARS-CoV-2 transmission^{3,8-11}. Subsequently, another spike mutation, N501Y, emerged convergently in several variants from multiple locations, including the United Kingdom (lineage B1.1.7), Brazil (lineage P.1), and South Africa (lineage B.1.351)². The N501Y mutation also increases the affinity of the spike for ACE2 and increases viral transmission^{12,13}. Some mutations in the spike, such as E484K, contribute to evasion of antibody neutralization. The E484K mutation has emerged independently in many variants, such as P.1, B.1.351, B.1.526 (first identified in New York), B.1.525 (first identified in Nigeria), and P3 (first identified in the Philippines)^{1,2,14}. Thus, as the COVID-19 pandemic continues, it is critical to closely monitor the impact of new variants on viral transmission, pathogenesis, and vaccine and therapeutic efficacies.

BNT162b2, anmRNA vaccine that expresses the full prefusion spike glycoprotein of SARS-CoV-2, showed an efficacy of 95% against COVID-1915. The United States Food and Drug Administration has authorized BNT162b2 for vaccination of individuals 12 years of age and older under emergency use provisions. Although the sequence of BNT162b2 mRNA is based on the original SARS-CoV-2 isolate¹⁶, we and others have shown that sera from those immunized with BNT162b2 retained neutralizing activity against all tested variants, including the B.1.1.7, P.1, B.1.351, B.1.429, B.1.526, and B1.1.7+E484K lineages^{1,2,4,5,17}. Since then, a massive second wave of COVID-19 in India has been associated with the expansion of variant B.1.617.1 to 32 countries, B.1.617.2 to 49 countries, and B.1.618 to 6 countries (https://cov-lineages.org/lineages/lineage B.1.618.html). The B.1.617.2 variant has shown evidence of particularly high transmissibility in the United Kingdom¹⁸. In addition. variant B.1.525, initially detected in Nigeria, has spread to 49 countries. All these variants currently circulate in the United States. The World Health Organization has designated B.1.617 lineage as a variant of concern and B.1.525 as a variant of interest¹⁸. This study analyzes BNT162b2-elicited neutralization against these newly emerged variants.

Results

To examine variants' effects on neutralization, we used a reverse genetic system to swap the complete spike gene from different variants into an early SARS-CoV-2 isolate USA-WA1/2020 [defined as wild-type (WT); Extended data Fig. 1a]¹⁹. Five chimeric viruses were prepared: (i) B.1.525-spike with Q52R, A67V, 67/70 deletion $(\Delta 67/70)$, 145 deletion $(\Delta 145)$, E484K, D614G, Q677H, and F888L from the B.1.525 variant¹⁸; (ii) B.1.617.1-spike with G142D, E154K, L452R, E484Q, D614G, P618R, Q1071H, H1101D, and a synonymous mutation at D111 (nucleotide T21895C) from the B.1.617.1 variant; (iii) B.1.617.2-spike with T19R, G142D, L452R, T478K, D614G, P681R, and D950N from an early B.1.617.2 variant (GISAID accession ID: EPI_ISL_1663247); (iv) B.1.617.2-v2-spike

Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA. 3Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA. 4Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA. 5Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA. 6Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA. 7 Pfizer Vaccine Research and Development, Pearl River, NY, USA. 8 BioNTech, Mainz, Germany. 9 These authors contributed equally: Jianying Liu, Yang Liu, [™]e-mail; ugur,sahin@biontech.de; xuxie@UTMB.edu; philip.dormitzer@pfizer.com; peshi@UTMB.edu

Article

with the mutations in B.1.617.2-spike plus an additional E156G substitution and F157-R158 deletion (Δ 157-158) found in the currently circulating B.1.617.2 isolates 18 ; and (v) B.1.618-spike with H49Y, Y145-H146 deletion (Δ 145-146), E484K, and D614G from the B.1.618 variant 20 . All mutant viruses yielded infectious titers of $>10^7$ plaque-forming units (PFU)/ml. The B.1.617.1-spike virus formed smaller plaques than other viruses on Vero E6 cells (Extended data Fig. 1b). All viruses were quantified for their viral RNA genome to PFU ratios, a parameter to indicate virus infectivity. None of the variant spikes significantly altered the viral RNA to PFU ratios (Extended data Fig. 1c), suggesting similar specific infectivities of the viral stocks. The complete spikes of all viral stocks were sequenced to ensure no undesired mutations.

To compare the neutralization susceptibility of different variants, we performed 50% plaque reduction neutralization testing (PRNT₅₀) using a panel of 20 sera collected from BTN162b2-immunized human subjects from a pivotal clinical trial^{15,21}. The serum specimens were drawn 2 or 4 weeks after two immunizations with 30 µg of BNT162b2, spaced three weeks apart (Extended data Fig. 2). Each serum was tested simultaneously for its PRNT₅₀ against the WT and mutant viruses (Extended data Table 1). All the sera neutralized the WT and all mutant viruses with titers of 1:40 or higher (Fig. 1). The geometric mean neutralizing titers against the WT, B.1.525-spike, B.1.617.1-spike, B.1.617.2-spike, B.1.617.2-v2-spike, and B.1.618-spike viruses were 502, 320, 157, 355, 343, and 331, respectively (Fig. 1). The results indicate that neutralization of all variants, except the B.1.617.1 variant, was only modestly reduced relative to neutralization of WT virus. Though neutralization of B.1.617.1 was more reduced, BNT162b2 immune sera efficiently neutralized the B.1.617.1 virus and all the other viruses.

Discussion

In response to the global pandemic of COVID-19, the scientific community has increased surveillance to identify mutations in circulating SARS-CoV-2 strains that might increase infectivity, enhance pathogenicity, or alter coverage by therapeutics and vaccines. Such information is essential to guide public policy and countermeasure development. As part of ongoing diligence on coverage of variants by the BNT162b2 vaccine, we have engineered variant spike genes into the backbone of the USA-WA1/2020 isolate, and, using the gold standard PRNT₅₀ assay, we have tested neutralization of the resulting viruses by a panel of BTN162b2-immunized human sera drawn 2 or 4 weeks after two doses of BNT162b2 given three weeks apart^{4,5}. Among all tested viruses, those with spike proteins from B.1.351⁴ and B.1.617.1 (this study) exhibited the greatest reduction in neutralization by the sera, with PRNT₅₀'s 0.36 times and 0.31 times, respectively, that of USA-WA1/2020. Similarly, a recent study found that BNT162b2-immune sera neutralized a clinical B.1.617.1 isolate with 0.14 times the neutralization titer of the sera against WT virus²². Other studies have found that BNT162b2-immune sera have 0.25 to 0.35 times the inhibitory titer against pseudovirus with a B.1.617.1 spike compared to that against WT spike pseudovirus²³, and that BNT162b2 immune sera inhibit pseudovirus with a B.1.618 spike to 0.37 times the serum inhibition titer against WT spike pseudovirus²⁰. Our results showed that among the four tested variants of Indian origin, B.1.617.1 was the least neutralized, probably due to the presence of both L452R and E484Q substitutions at the receptor binding site, potentially under positive selection for resistance to neutralization by antibodies 1,14,24. Nevertheless, all variants were still neutralized by all tested sera at titers of ≥40. The reduced neutralization could be a combined effect of mutation-mediated escape from antibody binding and mutation-altered spike function.

A recent real-world study in participants who had received two doses of BNT162b2 demonstrated an effectiveness of 75% against any documented infection and 100% against documented severe, critical, or fatal disease caused by the variant B.1.351²⁵, which showed a similar reduction of neutralization titers as B.1.617.1. Consistent with the modest reduction in neutralization of the B.1.617.2 variants by BNT162b2-elicited

sera reported here, a test negative case control study conducted in the United Kingdom found that the real world effectiveness of two doses of BNT162b2 against B.1.617.2 virus was only modestly reduced to 87.9%, compared to 93.4% effectiveness against B.1.1.7 lineage virus²⁶. Thus, reductions in neutralization like those observed in this study have not been demonstrated to result in loss of vaccine efficacy against disease. BNT162b2 elicits not only neutralizing antibodies, but also spike-specific CD4⁺ and CD8⁺ T cells and non-neutralizing antibody-dependent cytotoxicity, which can also serve as immune effectors^{27,28}. Because neutralization titers do not measure all potentially protective vaccine responses, they cannot substitute for studies of vaccine efficacy and real-world effectiveness of COVID-19 vaccines against variants.

A limitation of the current study is the potential for mutations to alter neutralization by affecting spike function rather than antigenicity, even though the variant viruses exhibited similar infectious titers and specific infectivities to the original USA-WA1/2020 isolate. In addition, the study only examined the effect of mutations in the spike glycoproteins. Mutations outside the spike gene could also affect viral replication and host immune response. This study did not examine the durability of neutralization titers against the variant viruses.

New variants will continue to emerge as the pandemic persists. To date, there is no evidence that virus variants have escaped BNT162b2-mediated protection from COVID-19. Therefore, increasing the proportion of the population immunized with current safe and effective authorized vaccines remains a key strategy to minimize the emergence of new variants and end the COVID-19 pandemic.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-021-03693-y.

- Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 27, 717-726, https://doi.org/10.1038/ s41591-021-01294-w (2021).
- Xie, X. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med 27, 620-621, https://doi.org/10.1038/ s41591-021-01270-4 (2021).
- Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116-121, https://doi.org/10.1038/s41586-020-2895-3 (2021).
- Liu, Y. et al. Neutralizing Activity of BNT162b2-Elicited Serum. N Engl J Med 384, 1466-1468, https://doi.org/10.1056/NEJMc2102017 (2021).
- Liu, Y. et al. BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. N Engl J Med, https://doi.org/10.1056/NEJMc2106083 (2021).
- Smith, E. C., Blanc, H., Surdel, M. C., Vignuzzi, M. & Denison, M. R. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. *PLoS Pathog* 9, e1003565, https://doi.org/ 10.1371/journal.ppat.1003565 (2013).
- Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, https://doi.org/10.1038/s41586-020-2012-7 (2020).
- Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182, 812-827 e819, https://doi.org/10.1016/j.cell. 2020.06.043 (2020).
- Yurkovetskiy, L. et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell 183, 739-751, https://doi.org/10.1016/j.cell.2020.09.032 (2020).
- Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464-1468, https://doi.org/10.1126/science.abe8499 (2020).
- Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122-127, https://doi.org/10.1038/s41586-021-03361-1 (2021).
- Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 94, https://doi.org/10.1128/JVI.00127-20 (2020).
- Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 transmission. bioRxiv, https://doi.org/10.1101/2021.03.08.434499 (2021).
- Ku, Z. et al. Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nat Commun 12, 469, https://doi.org/10.1038/s41467-020-20789-7 (2021).
- Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 383, 2603-2615, https://doi.org/10.1056/NEJMoa2034577 (2020).

- Vogel, A. B. et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 592, 283-289, https://doi.org/10.1038/s41586-021-03275-y (2021).
- 17. Zou, J. et al. The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization. NPJ Vaccines 6, 44, https://doi.org/10.1038/s41541-021-00313-8 (2021).
- Organization, W. H. Coronavirus Disease (COVID-19): Weekly Epidemiological Update. https://reliefweb.int/report/world/coronavirus-disease-covid-19-weekly-epidemiologicalupdate-11-may-2021 (2021).
- Xie, X. et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe 27, 841-848 e843, https://doi.org/10.1016/j.chom.2020.04.004 (2020).
- Tada, T. et al. The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. BioRxiv https://doi.org/10.1101/2021.05.14.444076 (2021).
- Walsh, E. E. et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 383, 2439-2450, https://doi.org/10.1056/NEJMoa2027906 (2020).
- Edara, V. V. et al. Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B.1.617.1 variant. bioRxiv, https://doi.org/10.1101/2021.05.09.443299 (2021).
- 23. Hoffmann, M. et al. SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. BioRxiv https://doi.org/10.1101/ 2021.05.04.442663 (2021).

- Tchesnokova, V. et al. Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-Cov-2 variants. bioRxiv, https://doi.org/10.1101/2021.02.22.432189 (2021).
- Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A. & National Study Group for, C.-V. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N Engl J Med, https://doi.org/10.1056/NEJMc2104974 (2021).
- Bernal, J. L. et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. MedRiv https://doi.org/10.1101/2021.05.22.21257658 (2021).
- Tauzin, A. et al. A single BNT162b2 mRNA dose elicits antibodies with Fc-mediated effector functions and boost pre-existing humoral and T cell responses. bioRxiv, https://doi.org/10.1101/2021.03.18.435972 (2021).
- Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, https://doi.org/10.1038/s41586-021-03653-6 (2021).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Article

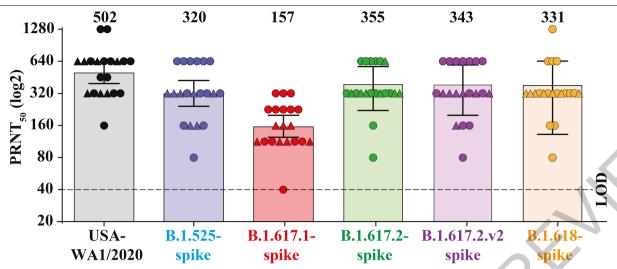


Fig. 1 | Neutralization of USA-WA1/2020 and variant SARS-CoV-2's by BNT162b2-immune sera. Neutralization of variant SARS-CoV-2's by BNT162b2 vaccine-elicited sera. The PRNT₅₀ results for USA-WA1/2020 and variant viruses are plotted. Individual PRNT₅₀ values are presented in Extended Data Table 1. Each data point represents the geometric mean PRNT $_{50}$ against the indicated $virus\ obtained\ with\ a\ serum\ sample\ obtained\ 2\ weeks\ (circles)\ or\ 4\ weeks$ (triangles) after the second dose of vaccine. The PRNT $_{\!50}{}'s$ were determined in duplicate assays, and the geometric means were calculated (n=20, pooled from two independent experiments). The heights of bars and the numbers over the

bars indicate geometric mean titers. The horizontal bars indicate 95% confidence intervals. The dashed line indicates the limit of detection (LOD) at 1:40. Statistical analysis was performed using the two-tailed Wilcoxon matched-pairs signed-rank test. The statistical significance of the difference $between \, geometric \, mean \, titers \, in \, the \, USA-WA1/2020 \, neutralization \, assay \, and \,$ in each variant virus neutralization assay with the same serum samples are as follows: P = 0.002 for B.1.525-spike, P < 0.0001 for B.1.617.1-spike, P = 0.001 for B.1.617.2-spike, P = 0.004 for B.1.617.2-v2-spike, P = 0.001 for B.1.618-spike.

Methods

Cells

African green monkey kidney epithelial Vero E6 cells (ATCC, Manassas, VA, USA) were grown in Dulbecco's modified Eagle's medium (DMEM; Gibco/Thermo Fisher, Waltham, MA, USA) with 10% fetal bovine serum (FBS; HyClone Laboratories, South Logan, UT) and 1% antibiotic/streptomycin (Gibco). The cell line was performed authentication through STR profiling by ATCC and tested negative for mycoplasma.

Construction of SARS-CoV-2s with variant spikes

All mutations from individual variant spike genes were engineered into an infectious cDNA clone of isolate USA-WA1/2020¹⁹. The spike mutations were introduced using a standard PCR-based mutagenesis method. A detailed protocol for construction of recombinant SARS-CoV-2 was previously reported²⁹. Briefly, the full-length cDNAs of viral genome containing the variant spike mutations were assembled by T4 ligase-mediated in vitro ligation. The resulting genome-length cDNAs were used as templates to in vitro transcribe full-length viral RNAs. The in vitro transcribed full-length viral RNAs were electroporated into Vero E6 cells. When electroporated cells developed cytopathic effects (due to recombinant virus production and replication) on day 2 post electroporation, the original viral stocks (P0) were harvested from culture medium. The PO viruses were amplified for another round on Vero E6 cells to produce the P1 stocks of viruses. The infectious titers of P1 viruses were measured by plaque assay on Vero E6 cells as previously described¹⁹. The complete sequences of spike genes from the P1 viruses were verified by Sanger sequencing to ensure no undesired mutations. The P1 viruses were used for subsequent neutralization testing.

Characterization of wild-type and mutant recombinant SARS-CoV-2s

To determine the specific infectivity of each virus, we quantified the P1 stocks for their genomic RNA content and plaque-forming units (PFU) by RT-qPCR and plaque assay on Vero E6 cells, respectively. The protocols for RT-qPCR and plaque assay have been reported previously³. Genomic viral RNA to PFU ratios (genomes/PFU) were calculated to indicate the specific infectivity of each virus preparation.

BTN162b2 vaccine-immunized human sera

A panel of 20 serum specimens was collected from 15 BTN162b2-immunized participants in a clinical trial 15,21 . The sera were collected 2 or 4 weeks after two doses of 30 μ g BNT162b2 mRNA, spaced 3 weeks apart (Extended data Fig. 2). Five of the 20 participants provided sera at both 2 and 4 weeks after the second dose of vaccine, as detailed in the footnote to Extended data Table 1.

Plaque-reduction neutralization assay

A 50% plaque-reduction neutralization test (PRNT $_{50}$), representing a gold standard of neutralization assay, was performed to quantify serum-mediated virus suppression. Individual sera were 2-fold serially diluted in culture medium with a starting dilution of 1:40. The diluted sera were mixed with 100 PFU of WT USA-WA1/2020 or variant mutant SARS-CoV-2. After 1-h incubation at 37 °C, the serum and virus mixtures were inoculated onto 6-well plates with a monolayer of Vero E6 cells pre-seeded the previous day. The minimal serum dilution that suppressed >50% of viral plaques is defined as PRNT $_{50}$. A detailed PRNT $_{50}$ protocol was reported previously $^{21.30}$.

Statistical analysis

Statistical analyses were performed by Graphpad Prism 9 for all experiments as detailed in legends to individual figures.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

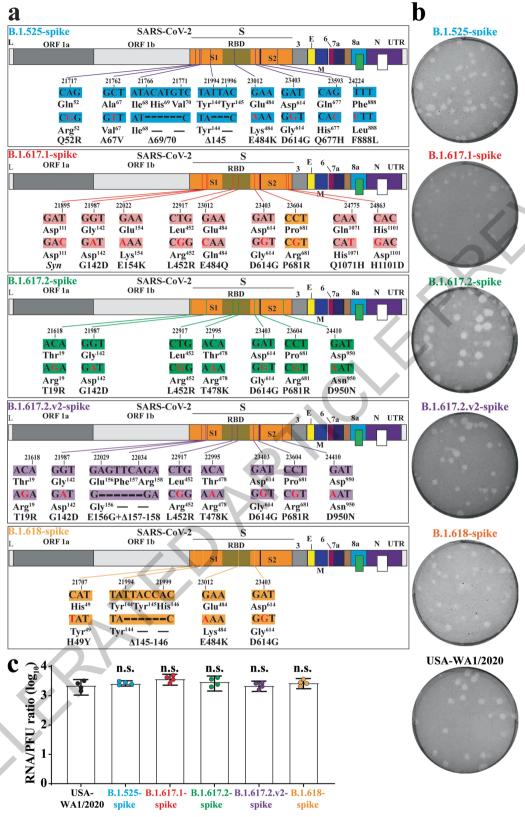
Source data for generating main figures are available in the online version of the paper. Any other information is available upon request.

- Xie, X. et al. Engineering SARS-CoV-2 using a reverse genetic system. Nature Protocols 16, 1761-1784, https://doi.org/10.1038/s41596-021-00491-8 (2021).
- Muruato, A. E. et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat Commun 11, 4059, https://doi.org/10.1038/ s41467-020-17892-0 (2020).

Acknowledgements The study was supported by Pfizer and BioNTech. We thank the Pfizer-BioNTech clinical trial C4591001 participants, from whom the post-immunization human sera were obtained. We also thank the colleagues at Pfizer and BioNTech who developed and produced the BNT162b2 vaccine candidate.

Author contributions Conceptualization, K.U.J, U.S., X.X., K.A.S., A.M., P.R.D., P.-Y.S.; Methodology, J.L., Y.L., H.X., J.Z., S.C.W., K.A.S., H.C., A.M., K.U.J., U.S., X.X., P.R.D., P.-Y.S.; Investigation, J.L., Y.L., H.X., J.Z., S.C.W., K.A.S., H.C., M.C., D.C., K.U.J., U.S., X.X., P.R.D., P.-Y.S.; Data Curation, J.L., Y.L., M.C., D.C., X.X., P.Y.S.; Writing-Original Draft, J.L., Y.L., U.S., X.X., P.R.D., P.-Y.S.; Writing-Review & Editing, S.C.W., K.A.S., A.M., K.U.J., U.S., X.X., P.R.D., P.-Y.S.; Supervision, K.U.J., U.S., X.X., P.R.D., P.-Y.S.; Funding Acquisition, K.U.J., U.S., P.R.D., P.-Y.S.

Competing interests X.X. and P.-Y.S. have filed a patent on the reverse genetic system of SARS-CoV-2. K.A.S., H.C., M.C., D.C., K.U.J., and P.R.D. are employees of Pfizer and may hold stock options. A.M. and U.S. are employees of BioNTech and may hold stock options. Y.L., H.X., J.Z., X.X., and P.-Y.S. received compensation from Pfizer to perform the project.


Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-021-03693-y.

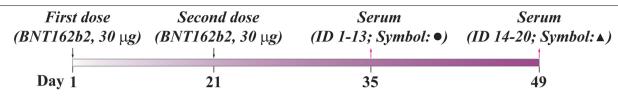
Correspondence and requests for materials should be addressed to U.S., X.X., P.R.D. or P.-Y.S.

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.

Extended Data Fig. 1| See next page for caption.

Extended Data Fig. 1 | Construction and characterization of SARS-CoV-2s with variant spikes. a, Diagram of engineered variant spike mutations.


Mutations from variant spikes were engineered into isolate USA-WA1/2020.

Mutations and deletions are indicated in red and by dotted lines, respectively.

Nucleotide and amino acid positions are also indicated. Different regions of SARS-CoV-2 genome are indicated: L (leader sequence), ORF (open reading frame), RBD (receptor binding domain), S (spike glycoprotein), S1 (N-terminal furin cleavage fragment of S), S2 (C-terminal furin cleavage fragment of S), E (envelope protein), M (membrane protein), N (nucleoprotein), and UTR (non-translated region). b, Plaque morphologies of recombinant SARS-CoV-2s. Plaque assays were performed on Vero E6 cells in 6-well plates. c, Comparison

of viral genomic RNA versus plaque-forming unit ratios (genomes/PFU) of recombinant SARS-CoV-2's. The genomic RNA and PFU of individual virus stocks were measured by RT-qPCR and plaque assay, respectively. The genomes/PFU ratios were calculated to determine specific infectivities. Dots represent individual biological replicates from 4 aliquots of viruses (n=4, one experiment). The values in the graph represent means with 95% confidence intervals. A non-parametric two-tailed Mann-Whitney test was used to determine significant differences between USA-WAI/2020 and variant viruses. P values were adjusted using the Bonferroni correction to account for multiple comparisons. Differences were considered significant if P < 0.05; n.s., no statistical difference.

Article

Extended Data Fig. 2 | **BNT162b2 immunization scheme and serum collection.** Twenty human sera were obtained from 15 trial participants at 2 weeks (circles) or 4 weeks (triangles) after the second dose of BNT162b2

vaccine. Five of the 15 participants provided sera at both 2 and 4 weeks after the second dose of vaccine.

$\textbf{Extended Data Table 1} \ \textbf{PRNT}_{50} \ \textbf{values of sera from BNT162b2-immunized trial participant against USA-WA1/2020 and variant SARS-CoV-2} \\$

Serum*				PRNT ₅₀ †									
ID‡	Age (years)	Cov	Mook	USA-WA1/2020		B.1.525-	B.1.617.1-spike		ke	B.1.617.2-	B.1.617.2-	B.1.618-	
		Sex	Week	Exp1	Exp2	GMT	spike	Exp1	Exp2	GMT	spike	v2-spike	spike
1	68	F	2	640	640	640	640	320	320	320	320	320	320
2	67	M	2	160	160	160	80	40	40	40	80	80	80
3	68	F	2	1280	1280	1280	640	320	320	320	640	640	1280
4	66	F	2	320	320	320	320	80	160	113	320	160	160
5	30	M	2	320	640	453	160	80	160	113	320	320	160
6	23	F	2	320	320	320	320	80	160	113	160	160	320
7	54	M	2	640	640	640	640	160	320	226	640	640	640
8	69	F	2	320	320	320	160	80	160	113	320	320	320
9	65	M	2	640	640	640	640	160	320	226	640	640	640
10	38	F	2	640	640	640	640	320	320	320	640	640	640
11	44	F	2	320	640	453	640	160	320	226	320	640	320
12	52	F	2	640	640	640	320	160	320	226	320	640	320
13	28	M	2	1280	1280	1280	320	160	320	226	640	640	320
14	69	F	4	320	320	320	160	80	160	113	320	320	320
15	68	F	4	320	320	320	160	80	160	113	320	320	320
16	26	F	4	320	320	320	320	80	160	113	320	320	320
17	54	M	4	640	640	640	320	160	160	160	640	320	320
18	35	F	4	640	640	640	320	160	160	160	320	320	320
19	44	F	4	640	640	640	320	80	160	113	320	320	320
20	52	F	4	640	640	640	320	160	160	160	320	160	320
		GMT⁵		485	520	502	320	126	197	157	355	343	331
	9	95% CI [?]	?	380-619	410-659	397-636	242-423	96-163	155-245	124-199	278-452	260-452	253-433

^{*}Pairs of sera were obtained from five of the twenty participants at both 2 and 4 weeks after the second dose of vaccine. The paired sera have ID' 1 and 15, 7 and 17, 8 and 14, 11 and 19, and 20.

†The data for USA-WA1/2020 and B.1.617.1 are from two independent experiments. The results for other variants are from one experiment each. For each independent experiment, the individual PRNT₅₀ value is the geometric mean of duplicate plaque assay results; no differences were observed between the duplicate assays.

 $^{{}^{\}ddagger} The serum donors were White, except for donor 10, who was Asian. All donors were of non-Hispanic/non-Latino ethnicity.$

 $[\]S{\mbox{Geometric}}$ mean neutralizing titers.

[‡]95% confidence interval (95% CI) for the GMT.

nature research

Corresponding author(s):	Pei-Yong Shi
Last updated by author(s):	May 27, 2021

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

_				
<u>_</u>	tat	tic	+1	CC

For	For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.						
n/a	Confirmed						
	The exact	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement					
	A stateme	ent on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly					
	The statis Only comn	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.					
\boxtimes	A description of all covariates tested						
\boxtimes	A descrip	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons					
	A full des AND varia	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)					
	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i>						
\boxtimes	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings						
\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes						
\boxtimes	Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated						
	Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.						
So	Software and code						
Poli	Policy information about <u>availability of computer code</u>						
Da	ta collection No code and software used for the data collection						
Da	Data analysis Graphpad Prism 9						
		g custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.					

Data

Policy information about <u>availability of data</u>

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Extended Data and source data for generating main figures are available in the online version of the paper. Any other information is available upon request.

Please select the o	ne below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
X Life sciences	Behavioural & social sciences Ecological, evolutionary & environmental sciences
For a reference copy of	the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>
Life scier	nces study design
All studies must dis	sclose on these points even when the disclosure is negative.
Sample size	No sample size calculation was performed. Sample size was chosen based on previous experience and availability, 20 samples were collected from BNT162b2 vaccinees participating in the phase 1 portion of the ongoing phase 1/2/3 clinical trial (ClinicalTrials.gov identifier: NCT04368728). Those 20 samples had been tested as neutralizing positive against WT SARS-CoV-2 using the method according to the reference (Walsh EE, Frenck RW, Jr., Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 2020.).
Data exclusions	No data was excluded in the study.
Replication	The experiments were performed twice with 20 different samples. The averaged results from the duplication were reported in this study. All attempts at replication were successful.
Randomization	No randomization was performed. All samples were analyzed for the neutralizing activities against WT SARS-CoV-2 and variants in the same experimental settings.
Blinding	Patient information was blinded in the study. Those 20 samples had been tested as neutralizing positive against WT SARS-CoV-2 using the method according to the reference (Walsh EE, Frenck RW, Jr., Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 2020.). The investigators were not blinded to the allocation during the experiments or to the outcome assessment. Blinding is not necessary because the results are quantitative and did not require subjective judgment or interpretation. Blinding is not typically used in the field.
Reportin	g for specific materials, systems and methods
'	on from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, ted is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & ex	perimental systems Methods

Ma	terials & experimental systems	Methods			
n/a	Involved in the study	n/a	Involved in the study		
\boxtimes	Antibodies	\boxtimes	ChIP-seq		
	Eukaryotic cell lines	\boxtimes	Flow cytometry		
\boxtimes	Palaeontology and archaeology	\boxtimes	MRI-based neuroimaging		
\boxtimes	Animals and other organisms				
\boxtimes	Human research participants				
\boxtimes	Clinical data				
\boxtimes	Dual use research of concern				

Eukaryotic cell lines

Policy information about <u>cell lines</u>					
Cell line source(s)	Vero E6 cells (ATCC® CRL-1586) were obtained from ATCC				
Authentication	ATCC have comprehensively performed authentication on cell lines through STR profiling.				
Mycoplasma contamination	All cell lines were tested negative for mycoplasma.				
Commonly misidentified lines (See ICLAC register)	No commonly misidentified cell lines were used in the study.				