Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Layer Hall effect in a 2D topological axion antiferromagnet


Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator—even-layered, two-dimensional MnBi2Te4—in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect—the layer Hall effect—in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck’s constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4,5,6,7,8,9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Basic characterizations of the antiferromagnetic six-SL MnBi2Te4.
Fig. 2: Observation of the layer Hall effect.
Fig. 3: Charge-density dependence of the layer Hall effect and the layer-locked Berry curvature.
Fig. 4: Manipulation of the layer-locked Berry curvature by the axion field E B and electrical readout by the layer Hall effect.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. 1.

    Néel, L. Nobel Lecture: Magnetism and the local molecular field. Nobel Lectures, Physics 1963–1970 (Elsevier, 1970).

  2. 2.

    Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  4. 4.

    Chen, H., Niu, Q. & MacDonald, A. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  5. 5.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  CAS  Google Scholar 

  8. 8.

    Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  9. 9.

    Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. 12.

    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  13. 13.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    ADS  PubMed  Article  Google Scholar 

  14. 14.

    Wang, J., Lian, B. & Zhang, S.-C. Generation of spin currents by magnetic field in \({\mathscr{T}}\)-and \({\mathscr{P}}\)-broken materials. Spin 9, 1940013 (2019).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. 16.

    Armitage, N. P. & Wu, L. On the matter of topological insulators as magnetoelectrics. SciPost Phys. 6, 046 (2019).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  17. 17.

    Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Du, S. et al. Berry curvature engineering by gating two-dimensional antiferromagnets. Phys. Rev. Res. 2, 022025 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in \({\mathscr{P}}{\mathscr{T}}\)-symmetric magnetic topological quantum materials. npj Comput. Mater. 6, 199 (2020).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Fei, R., Song, W. & Yang, L. Giant linearly-polarized photogalvanic effect and second harmonic generation in two-dimensional axion insulators. Phys. Rev. B 102, 035440 (2020).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. 24.

    Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. 25.

    Rienks, E. D. L. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  26. 26.

    Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  29. 29.

    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl Sci. Rev. 7, 1280–1287 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Liu, C. et al. Helical Chern insulator phase with broken time-reversal symmetry in MnBi2Te4. Preprint at (2020).

  32. 32.

    Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    CAS  Article  Google Scholar 

  33. 33.

    Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. 34.

    Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  36. 36.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. 37.

    Iyama, A. & Kimura, T. Magnetoelectric hysteresis loops in Cr2O3 at room temperature. Phys. Rev. B 87, 180408(R) (2013).

    ADS  Article  CAS  Google Scholar 

  38. 38.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. 39.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  40. 40.

    Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zhang, S. et al. Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device. Nano Lett. 20, 709–714 (2020).

    ADS  PubMed  Article  CAS  Google Scholar 

  42. 42.

    Gordon, K. N. et al. Strongly gapped topological surface states on protected surfaces of antiferromagnetic MnBi4Te7 and MnBi6Te10. Preprint at (2019).

  43. 43.

    Chen, Y. J. et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041040 (2019).

    CAS  Google Scholar 

  44. 44.

    Hao, Y.-J. et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019).

    CAS  Google Scholar 

  45. 45.

    Swatek, P. et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 101, 161109 (2020).

    ADS  CAS  Article  Google Scholar 

  46. 46.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zhao, S. Y. F. et al. Sign reversing Hall effect in atomically thin high temperature superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  48. 48.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  49. 49.

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  50. 50.

    Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  51. 51.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Article  Google Scholar 

  52. 52.

    Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  53. 53.

    Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    ADS  Article  CAS  Google Scholar 

  54. 54.

    Newhouse-Illige, T. et al. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions. Nat. Commun. 8, 15232 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Kanai, S. et al. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

    ADS  Article  CAS  Google Scholar 

  56. 56.

    Hirsch, S. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    ADS  CAS  Article  Google Scholar 

  57. 57.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  58. 58.

    Manna, K. et al. From colossal to zero: controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Phys. Rev. X 8, 041045 (2018).

    CAS  Google Scholar 

  59. 59.

    Yasuda, K. et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 27, eabd3230 (2021).

    Google Scholar 

Download references


We thank F. Zhao and P. Kim for allowing us to use their glovebox and sample preparation facilities. We thank T. I. Andersen, G. Scuri, H. Park and M. D. Lukin for their help with magnetic measurements. We also thank F. Zhao, P. Kim, Y. Gao and C. Liu for discussions. Work in the Xu group was supported partly by the Center for the Advancement of Topological Semimetals (CATS), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy (DOE) Office of Science, through the Ames Laboratory under contract DE-AC0207CH11358 (fabrication and measurements) and partly through the STC Center for Integrated Quantum Materials (CIQM), National Science Foundation (NSF) award no. ECCS-2025158 (data analysis). S.-Y.X. acknowledges the Corning Fund for Faculty Development. Q.M. acknowledges support from the CATS, an EFRC funded by the US DOE Office of Science, through the Ames Laboratory under contract DE-AC0207CH11358. C.T. acknowledges support from the Swiss National Science Foundation under project P2EZP2_191801. Y.-F.L., A. Akey, J.G., D.C.B. and L.F. were supported by the CIQM, NSF award no. ECCS-2025158. This work was performed in part at the Center for Nanoscale Systems at Harvard University, a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the NSF under NSF award no.1541959. Work at UCLA was supported by the US DOE, Office of Science, Office of Basic Energy Sciences (BES) under award no. DE-SC0021117 for bulk sample growth, transport and magnetic property measurements. The work at Northeastern University was supported by the Air Force Office of Scientific Research under award number FA955-20-1-0322, and it benefited from the computational resources of Northeastern University’s Advanced Scientific Computation Center (ASCC) and the Discovery Cluster. B.G. and A. Agarwal thank the Science Education and Research Board and the Department of Science and Technology of the government of India for financial support, and the computer centre IIT Kanpur for providing the High Performance Computing facility. T.-R.C. was supported by the Young Scholar Fellowship Program from the Ministry of Science and Technology (MOST) in Taiwan, under a MOST grant for the Columbus Program MOST110-2636-M-006-016, the National Cheng Kung University, Taiwan, and National Center for Theoretical Sciences, Taiwan. Work at NCKU was supported by MOST, Taiwan, under grant MOST107-2627-E-006-001 and Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at NCKU. H.L. acknowledges support by MOST in Taiwan under grant number MOST 109-2112-M-001-014-MY3. H.-Z.L. was supported by the National Natural Science Foundation of China (11925402), Guangdong province (2016ZT06D348, 2020KCXTD001), the National Key R&D Program (2016YFA0301700), Shenzhen High-level Special Fund (G02206304, G02206404), and the Science, Technology and Innovation Commission of Shenzhen Municipality (ZDSYS20170303165926217, JCYJ20170412152620376, KYTDPT20181011104202253), and Center for Computational Science and Engineering of SUSTech. R.C. was supported by the China Postdoctoral Science Foundation (grant no. 2019M661678) and the SUSTech Presidential Postdoctoral Fellowship. C.F. was supported by the ERC Advanced Grant no. 742068 ‘TOPMAT’ and by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy through Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter—ct.qmat (EXC 2147, project-id 390858490). K.S.B. is grateful for the support of the Office of Naval Research under award no. N00014-20-1-2308. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, grant no. JPMXP0112101001 and JSPS KAKENHI grant no. JP20H00354. Z.Z., N.W., Z.H. and W.G. thank the Singapore National Research Foundation through its Competitive Research Program (CRP award no. NRF-CRP21-2018-0007, NRF-CRP22-2019-0004). X.-Y.Z., Y.-X.W. and B.B.Z. acknowledge support from NSF award no. ECCS-2041779.

Author information




S.-Y.X. conceived the experiment and supervised the project. A.G. fabricated the devices with help from Y.-F.L., J.-X.Q., D.B., C.F., K.S.B. and Q.M. A.G. performed the transport measurements and analysed data with help from Y.-F.L., C.T., J.-X.Q., S.-C.H., D.B., T.D. and Q.M. C.H. and N.N. grew the bulk MnBi2Te4 single crystals. Z.Z., N.W., Z.H., W.G., J.-X.Q., C.T. and A.G. performed optical magnetic circular dichroism measurements. X.-Y.Z., Y.-X.W. and B.B.Z. performed nitrogen-vacancy centre magnetometry experiments. B.G., R.C., H.S., A. Agarwal, C.T., S.-Y.X., H.-Z.L, H.-J.T., B.S., A.B., H.L., L.F. and T.-R.C. made theoretical studies including first-principles calculations and tight-binding modelling. A. Akey, J.G. and D.C.B. performed transmission electron microscopy measurements. J.-X.Q. performed atomic force microscopy measurements. K.W. and T.T. grew the bulk hBN single crystals. S.-Y.X., A.G. and Q.M. wrote the manuscript with input from all authors. S.-Y.X. was responsible for the overall direction, planning and integration among different research units.

Corresponding authors

Correspondence to Ni Ni or Su-Yang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spatial engineering of Berry curvature.

a, Topological axion domain wall constructed by the axion field E B. b, Spatially modulated Berry curvature moiré superlattice enabled by a MnBi2Te4-twisted hBN heterostructure59.

Extended Data Fig. 2 Topological Chern insulator state in MnBi2Te4.

a, Microscope image of the 6SL MnBi2Te4 device presented in the main text. The circuit for our transport measurements is noted. bc, Longitudinal Rxx (c) and transverse (Hall) resistance Ryx (b) as a function of VBG and B. d, Rxx and Ryx versus VBG at −9 T.

Extended Data Fig. 3 Electric field dependence of the layer Hall effect in 6SL MnBi2Te4.

a, The AHE conductivity \({\sigma }_{xy}^{{\rm{AHE}}}\) as a function of electric field. The charge density n is set in the hole-doped regime (n = −1.4 × 1012 cm−2). b, Same as a but n is set in the electron-doped regime (n = +1.5 × 1012 cm−2). cd, First-principles calculated AHE conductivity \({\sigma }_{xy}^{{\rm{AHE}}}\) as a function of electric field. c, Fermi level is set in the valence band (−10 meV). d, Fermi level is set in the conduction band (+30 meV).

Extended Data Fig. 4 Temperature-dependent measurements of 6SL MnBi2Te4.

a, Temperature-dependent Rxx data showing the Néel temperature TN. b, Ryx versus B measurements at different temperatures. Data at different temperatures are offset by 4 kΩ for visibility at electric field 0.6 V nm−1. c, AHE resistance as a function of temperature.

Extended Data Fig. 5 Schematic electronic structure and Berry curvature of even-layered MnBi2Te4.

ab, Same antiferromagnetic state under opposite electric fields. cd, Opposite antiferromagnetic states under the same electric field.

Extended Data Fig. 6 First-principles calculated band structures.

a–e, Calculated band structures of 6SL antiferromagnetic MnBi2Te4 for different theoretical electric fields ETHY.

Extended Data Fig. 7 Optical contrast of the MnBi2Te4 flakes.

a, Lower panel, optical image of few-layer flakes of MnBi2Te4 exfoliated on SiO2 substrate. Upper panel, lattice of one SL MnBi2Te4. b, Optical contrast C = (Iflake − Isubstrate)/(Iflake + Isubstrate) as a function of number of layers, which was independently determined by atomic force microscope. This process was repeated on many samples (each symbol in the figure represents an independent sample) to ensure a reproducible and reliable correspondence between C and layer number (see Methods and Supplementary Information section V.1 for details).

Extended Data Fig. 8 Experimental data and microscopic picture for odd-layered MnBi2Te4.

ab, The AHE for 5SL MnBi2Te4. In contrast to 6SL, the AHE in 5SL does not change sign as one tunes the charge density from the hole-doped regime to the electron-doped regime. Data at different n are offset by 200 μS for visibility. cf, In an odd-layered antiferromagnetic system, the top and bottom Dirac fermions experience the same magnetizations and hence open up gaps in the same fashion. As such, conduction and valence bands have the opposite Berry curvature. Therefore, the AHE remains the same sign in the hole-doped and electron-doped regimes. This conclusion is independent of E.

Extended Data Fig. 9 Unconventional Hall effects in a wide range of quantum materials.

a, The AHE in ferromagnets induced by the total Berry curvature. b, The valley Hall effect in gapped graphene and transition metal dichalcogenides induced by the valley-locked Berry curvature. c, The spin Hall effect in heavy metals induced by spin-locked Berry curvature. d, The layer Hall effect in the AFM axion state in even-layered MnBi2Te4 induced by layer-locked Berry curvature.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Figures 1-29, Supplementary Tables 1-2, and Supplementary References.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Liu, YF., Hu, C. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing