Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limited potential for bird migration to disperse plants to cooler latitudes


Climate change is forcing the redistribution of life on Earth at an unprecedented velocity1,2. Migratory birds are thought to help plants to track climate change through long-distance seed dispersal3,4. However, seeds may be consistently dispersed towards cooler or warmer latitudes depending on whether the fruiting period of a plant species coincides with northward or southward migrations. Here we assess the potential of plant communities to keep pace with climate change through long-distance seed dispersal by migratory birds. To do so, we combine phenological and migration information with data on 949 seed-dispersal interactions between 46 bird and 81 plant species from 13 woodland communities across Europe. Most of the plant species (86%) in these communities are dispersed by birds migrating south, whereas only 35% are dispersed by birds migrating north; the latter subset is phylogenetically clustered in lineages that have fruiting periods that overlap with the spring migration. Moreover, the majority of this critical dispersal service northwards is provided by only a few Palaearctic migrant species. The potential of migratory birds to assist a small, non-random sample of plants to track climate change latitudinally is expected to strongly influence the formation of novel plant communities, and thus affect their ecosystem functions and community assembly at higher trophic levels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Location of the 13 European seed-dispersal networks we studied, and network with bird–plant interactions in relation to bird migration.
Fig. 2: Seed-dispersal interactions of plants with migratory birds in relation to southward and northward migration and Mediterranean or temperate biome.
Fig. 3: Relevance of Palaearctic and Afro-Palaearctic migratory birds dispersing seeds during their southward and northward migration in Mediterranean and temperate communities.

Data availability

All data used in the analyses are available through the Dryad Digital Repository ( The dated phylogeny of seed plants (Spermatophyta) used to obtain our phylogenetic tree is available through GitHub ( Data on bird body weight used for size classification (Supplementary Fig. 2) were obtained from EltonTraits 1.0 available through Figshare (

Code availability

The R scripts used to generate all results and figures are available through the Dryad Digital Repository (


  1. 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Google Scholar 

  2. 2.

    Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    ADS  CAS  Google Scholar 

  3. 3.

    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).

    Google Scholar 

  4. 4.

    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    CAS  Google Scholar 

  5. 5.

    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Google Scholar 

  6. 6.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar 

  7. 7.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Google Scholar 

  8. 8.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS  CAS  Google Scholar 

  9. 9.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS  CAS  Google Scholar 

  10. 10.

    González-Varo, J. P., López-Bao, J. V. & Guitián, J. Seed dispersers help plants to escape global warming. Oikos 126, 1600–1606 (2017).

    Google Scholar 

  11. 11.

    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).

    Google Scholar 

  13. 13.

    Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).

    Google Scholar 

  14. 14.

    Bacles, C. F. E., Lowe, A. J. & Ennos, R. A. Effective seed dispersal across a fragmented landscape. Science 311, 628 (2006).

    Google Scholar 

  15. 15.

    Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl Acad. Sci. USA 104, 3278–3282 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Breitbach, N., Böhning-Gaese, K., Laube, I. & Schleuning, M. Short seed-dispersal distances and low seedling recruitment in farmland populations of bird-dispersed cherry trees. J. Ecol. 100, 1349–1358 (2012).

    Google Scholar 

  17. 17.

    Cain, M. L., Damman, H. & Muir, A. Seed dispersal and the Holocene migration of woodland herbs. Ecol. Monogr. 68, 325–347 (1998).

    Google Scholar 

  18. 18.

    Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).

    Google Scholar 

  19. 19.

    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).

    Google Scholar 

  20. 20.

    Viana, D. S., Gangoso, L., Bouten, W. & Figuerola, J. Overseas seed dispersal by migratory birds. Proc. R. Soc. Lond. B 283, 20152406 (2016).

    Google Scholar 

  21. 21.

    Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36, 430–438 (2013).

    Google Scholar 

  22. 22.

    Carlquist, S. The biota of long-distance dispersal. V. Plant dispersal to Pacific islands. Bull. Torrey Bot. Club 94, 129–162 (1967).

    Google Scholar 

  23. 23.

    Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Allometric scaling of long-distance seed dispersal by migratory birds. Am. Nat. 181, 649–662 (2013).

    Google Scholar 

  25. 25.

    Martínez-López, V., García, C., Zapata, V., Robledano, F. & De la Rúa, P. Intercontinental long-distance seed dispersal across the Mediterranean basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420 (2020).

    Google Scholar 

  26. 26.

    Newton, I. The Migration Ecology of Birds (Elsevier, 2010).

  27. 27.

    Sorensen, A. E. Interactions between birds and fruit in a temperate woodland. Oecologia 50, 242–249 (1981).

    ADS  CAS  Google Scholar 

  28. 28.

    González-Varo, J. P., Arroyo, J. M. & Jordano, P. The timing of frugivore-mediated seed dispersal effectiveness. Mol. Ecol. 28, 219–231 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Jordano, P. in Seeds: The Ecology of Regeneration of Plant Communities (ed. Gallagher, R. S.) 18–61 (CABI, 2014).

  30. 30.

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).

  31. 31.

    Gallinat, A. S. et al. Patterns and predictors of fleshy fruit phenology at five international botanical gardens. Am. J. Bot. 105, 1824–1834 (2018).

    Google Scholar 

  32. 32.

    Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mitter, C., Farrell, B. & Futuyma, D. J. Phylogenetic studies of insect–plant interactions: insights into the genesis of diversity. Trends Ecol. Evol. 6, 290–293 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Google Scholar 

  36. 36.

    Beresford, A. E. et al. Phenology and climate change in Africa and the decline of Afro-Palearctic migratory bird populations. Remote Sens. Ecol. Conserv. 5, 55–69 (2019).

    Google Scholar 

  37. 37.

    Nilsson, C., Bäckman, J. & Alerstam, T. Seasonal modulation of flight speed among nocturnal passerine migrants: differences between short- and long-distance migrants. Behav. Ecol. Sociobiol. 68, 1799–1807 (2014).

    Google Scholar 

  38. 38.

    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).

    ADS  Google Scholar 

  40. 40.

    Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).

    ADS  Google Scholar 

  41. 41.

    Brochet, A.-L. et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int. 26, 1–28 (2016).

    Google Scholar 

  42. 42.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    Google Scholar 

  43. 43.

    Stiles, E. W. Patterns of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. Am. Nat. 116, 670–688 (1980).

    Google Scholar 

  44. 44.

    Noma, N. & Yumoto, T. Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol. Res. 12, 119–129 (1997).

    Google Scholar 

  45. 45.

    Lovas-Kiss, Á. et al. Shorebirds as important vectors for plant dispersal in Europe. Ecography 42, 956–967 (2019).

    Google Scholar 

  46. 46.

    Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. K. Up, up and away: bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).

    Google Scholar 

  47. 47.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Google Scholar 

  48. 48.

    Rivas-Martínez, S., Penas, A. & Díaz, T. Bioclimatic Map of Europe, Thermoclimatic Belts (Cartographic Service, Univ. León, 2004).

  49. 49.

    Olesen, J. M. et al. Missing and forbidden links in mutualistic networks. Proc. R. Soc. Lond. B 278, 725–732 (2011).

    Google Scholar 

  50. 50.

    Snow, B. & Snow, D. Birds and Berries (T. and A. D. Poyser, 1988).

  51. 51.

    Stiebel, H. & Bairlein, F. Frugivory in central European birds I: diet selection and foraging. Vogelwarte 46, 1–23 (2008).

    Google Scholar 

  52. 52.

    González-Varo, J. P., Arroyo, J. M. & Jordano, P. Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies. Methods Ecol. Evol. 5, 806–814 (2014).

    Google Scholar 

  53. 53.

    Simmons, B. I. et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87, 995–1007 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Plein, M. et al. Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94, 1296–1306 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Albrecht, J. et al. Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. J. Ecol. 103, 526–536 (2015).

    Google Scholar 

  56. 56.

    García, D. Birds in ecological networks: insights from bird–plant mutualistic interactions. Ardeola 63, 151–180 (2016).

    Google Scholar 

  57. 57.

    Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).

    Google Scholar 

  58. 58.

    Torroba Balmori, P., Zaldívar García, P. & Hernández Lázaro, Á. Semillas de Frutos Carnosos del Norte Ibérico: Guía de Identificación (Ediciones Univ. Valladolid, 2013).

  59. 59.

    Stiebel, H. Frugivorie bei Mitteleuropäischen Vögeln. PhD thesis, Univ. Oldenburg (2003).

  60. 60.

    Jordano, P. Data from: Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Dryad (2013).

  61. 61.

    González-Varo, J. P., Carvalho, C. S., Arroyo, J. M. & Jordano, P. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol. Ecol. 26, 4309–4321 (2017).

    Google Scholar 

  62. 62.

    Ratnasingham, S. & Hebert, P. D. N. bold: the Barcode of Life data system ( Mol. Ecol. Notes 7, 355–364 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    CBOL Plant Working Group et al. A DNA barcode for land plants. Proc. Natl Acad. Sci. USA 106, 12794–12797 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    González-Varo, J. P., Díaz-García, S., Arroyo, J. M. & Jordano, P. Seed dispersal by dispersing juvenile animals: a source of functional connectivity in fragmented landscapes. Biol. Lett. 15, 20190264 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fuentes, M. Latitudinal and elevational variation in fruiting phenology among western European bird-dispersed plants. Ecography 15, 177–183 (1992).

    Google Scholar 

  67. 67.

    Herrera, C. M. A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol. Monogr. 54, 1–23 (1984).

    Google Scholar 

  68. 68.

    Hampe, A. & Bairlein, F. Modified dispersal-related traits in disjunct populations of bird-dispersed Frangula alnus (Rhamnaceae): a result of its Quaternary distribution shifts? Ecography 23, 603–613 (2000).

    Google Scholar 

  69. 69.

    Thomas, P. A. & Mukassabi, T. A. Biological flora of the British Isles: Ruscus aculeatus. J. Ecol. 102, 1083–1100 (2014).

    Google Scholar 

  70. 70.

    Jordano, P. Biología de la reproducción de tres especies del género Lonicera (Caprifoliaceae) en la Sierra de Cazorla. An. Jardin Botanico Madr. 1979 48, 31–52 (1990).

    Google Scholar 

  71. 71.

    Debussche, M. & Isenmann, P. A Mediterranean bird disperser assemblage: composition and phenology in relation to fruit availability. Rev. Ecol. 47, 411–432 (1992).

    Google Scholar 

  72. 72.

    Jordano, P. Diet, fruit choice and variation in body condition of frugivorous warblers in Mediterranean scrubland. Ardea 76, 193–209 (1988).

    Google Scholar 

  73. 73.

    Barroso, Á., Amor, F., Cerdá, X. & Boulay, R. Dispersal of non-myrmecochorous plants by a “keystone disperser” ant in a Mediterranean habitat reveals asymmetric interdependence. Insectes Soc. 60, 75–86 (2013).

    Google Scholar 

  74. 74.

    González-Varo, J. P. Fragmentation, habitat composition and the dispersal/predation balance in interactions between the Mediterranean myrtle and avian frugivores. Ecography 33, 185–197 (2010).

    Google Scholar 

  75. 75.

    Sánchez-Salcedo, E. M., Martínez-Nicolás, J. J. & Hernández, F. Phenological growth stages of mulberry tree (Morus sp.) codification and description according to the BBCH scale. Ann. Appl. Biol. 171, 441–450 (2017).

    Google Scholar 

  76. 76.

    García-Castaño, J. L. Consecuencias Demográficas de la Dispersión de Semillas por Aves y Mamíferos Frugívoros en la Vegetación Mediterránea de Montaña. PhD thesis, Univ. Sevilla (2001).

  77. 77.

    Gilbert, O. L. Symphoricarpos albus (L.) S. F. Blake (S. rivularis Suksd., S. racemosus Michaux). J. Ecol. 83, 159–166 (1995).

    Google Scholar 

  78. 78.

    Billerman, S. M. et al. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).

  79. 79.

    Tellería, J., Asensio, B. & Díaz, M. Aves Ibéricas: II. Paseriformes (J. M. Reyero Editor, 1999).

  80. 80.

    Díaz, M., Asensio, B. & Tellería, J. L. Aves Ibéricas: I. No paseriformes (J. M. Reyero Editor, 1996).

  81. 81.

    SEO/Birdlife. La Enciclopedia de las Aves de España (SEO/Birdlife-Fundación BBVA, 2019).

  82. 82.

    Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 2. Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia SCR-Roma, 2008).

  83. 83.

    Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 1. Non-Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia CSR-Roma, 2008).

  84. 84.

    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland (T. & A. D. Poyser, 2002).

  85. 85.

    Cramp, S. The Complete Birds of the Western Paleartic (CD-ROM) (Oxford Univ. Press, 1998).

  86. 86.

    Bairlein, F. et al. Atlas des Vogelzugs - Ringfunde deutscher Brut- und Gastvögel (Aula, 2014).

  87. 87.

    Tomiałojć, L. & Stawarczyk, T. Awifauna Polski: Rozmieszczenie, Liczebność i Zmiany (PTPP pro. Natura, 2003).

  88. 88.

    Busse, P., Gromadzki, M. & Szulc, B. Obserwacje przelotu jesiennego ptaków w roku 1960 w Górkach Wschodnich koło Gdańska (Observations on bird migration at Górki Wschodnie near Gdańsk Autumn 1960). Acta Ornithologica 7, 305–336 (1963).

    Google Scholar 

  89. 89.

    Bobrek, R. et al. Międzysezonowa powtarzalność dynamiki jesiennej migracji wróblowych Passeriformes nad Jeziorem Rakutowskim. Ornis Polonica 57, 39–57 (2016).

    Google Scholar 

  90. 90.

    Keller, M. et al. Ptaki Środkowej Wisły (M-ŚTO, 2017).

  91. 91.

    Bocheński, M. et al. Awifauna przelotna i zimująca środkowego odcinka doliny Odry. Ptaki Śląska 16, 123–161 (2006).

    Google Scholar 

  92. 92.

    BTO. BirdTrack. (accessed October 2018).

  93. 93.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  94. 94.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (SAGE, 2011).

  95. 95.

    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).

    Google Scholar 

  96. 96.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Google Scholar 

  97. 97.

    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS  CAS  Google Scholar 

  100. 100.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS  Google Scholar 

  101. 101.

    Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  103. 103.

    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Google Scholar 

  104. 104.

    Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    ADS  CAS  Google Scholar 

  105. 105.

    Bates, D., Maechler, M. & Bolker, B. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-19 (2013).

Download references


The ‘Molecular Ecology Laboratory’ (LEM–EBD–CSIC; ISO9001:2015 and ISO14001:2015 certifications) and the ‘Research Unit of Biodiversity’ (UO–CSIC–PA) provided logistical support for molecular analyses. We thank L. Viesca and E. Cires for laboratory assistance, and J. M. Varela for the bird illustrations. Barcoding data were obtained within an Individual Fellowship from the Marie Sklodowska-Curie Actions (H2020-MSCA-IF-2014-656572: MobileLinks) and supported by a GRUPIN grant from the Regional Government of Asturias (IDI/2018/000151). ‘King Jaume I’ awarded to A.T. supported data collation during two postdoctoral contracts. J.P.G.-V. is supported by a Spanish ‘Ramón y Cajal’ fellowship (RYC-2017-22095) and a grant from the Spanish MICINN (PID2019-104922GA-I00/AEI/10.13039/501100011033). B.R. is supported by a Spanish ‘Juan de la Cierva Incorporación’ fellowship (IJCI-2017-33475). R.H.H. is funded by the Portuguese Foundation for Science and Technology (UID/BIA/04004/2020). B.I.S. is supported by a Royal Commission for the Exhibition of 1851 Research Fellowship. W.J.S. is funded by Arcadia.

Author information




J.P.G.-V. conceived the study. J.P.G.-V., J.A., J.M.A., R.S.B., T.B., G.E.-Á., N.F., D.G., J.C.I., P.J., P.K., W.J.S. and E.V. obtained data of seven new seed-dispersal networks within the EU project MobileLinks. J.M.A. and J.C.I. also conducted the molecular analyses for these networks. L.P.d.S. and R.H.H. provided data of one unpublished network. P.J. provided data of two published networks. B.R., J.P.G.-V. and A.T. gathered data on fruiting phenology and bird migrations; J.P.G.-V., B.R., J.A. and B.I.S. analysed the data; J.P.G.-V. wrote the first manuscript draft, and all authors worked on the final version.

Corresponding author

Correspondence to Juan P. González-Varo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Christiaan Both, Barnabas Daru, David Inouye, Duarte Viana and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Conceptual diagrams showing directional patterns of long-distance seed dispersal by migratory birds and phenological overlaps between seed-dispersal periods and bird migrations.

a, Yellow and black arrows denote long-distance seed dispersal within and beyond the current range of a plant species, respectively. Seed dispersal mediated by birds migrating south (left), non-migrating birds (centre) and birds migrating north (right). The colour gradient from red to blue represents a climatic gradient from warmer to cooler latitudes (from south to north in the Northern Hemisphere), respectively. In the diagram on the right, seed dispersal within the range is necessary for warm-adapted populations to colonize cooler areas that are warming owing to climate change, whereas seed dispersal beyond the range is necessary for range shifts. b, Three hypothetical examples of phenological overlap between the seed-dispersal period of plant species i and bird species j while the bird migrates northwards (top), southwards (middle) or during both migrations (bottom). The examples include a wintering migrant with a winter–spring fruiting plant (top); a summer migrant with a summer–autumn fruiting plant (middle); and a transient migrant with an autumn–winter fruiting plant (bottom). In some cases, there is also phenological overlap during non-migration periods. More details on phenological overlaps in relation to the migratory strategy of birds are provided in Supplementary Fig. 3.

Extended Data Fig. 2 Estimated interaction frequencies of plant species within each study network with birds migrating northwards, southwards or not migrating.

Blue, interactions during northward migration; red, interactions during southward migration; grey, non-migration interactions. Each panel represents a seed-dispersal network. The left column of panels includes Mediterranean networks, whereas the right column includes temperate networks. DE, Germany; ES, Spain; IT, Italy; PL, Poland; PT, Portugal; UK, United Kingdom.

Extended Data Fig. 3 Variables of the seed-dispersal phenology across the phylogenetic tree of plants.

Phylogenetic signal was tested in plant-species means across networks in start and end dates (Dstart and Dend), as well as in length (Dlength = Dend – Dstart) of the seed-dispersal period (n = 81 plant species) by means of Pagels’ λ, as described in ‘Phylogenetic signal in plants’ in ‘Statistical analyses’ (Methods). The three phenological variables showed significant phylogenetic signal (Dstart, λ = 0.800, P = 0.0103; Dend, λ = 0.781, P = 0.0015; and Dlength, λ = 0.419, P = 0.0343). To test for phylogenetic signal, we previously calculated the species-level means for Dstart, Dend and Dlength across bioclimates (Extended Data Fig. 6). For this reason, we assessed the amount of variance in these phenological variables that is accounted for by bioclimate, as compared to that accounted for by species through linear-mixed models (LMMs) that included ‘bioclimate’ as fixed factor and ‘plant species’ as random factor to account for the repeated measures per species. Bioclimate accounted for only a minor fraction of variance (1–3%) in Dstart, Dend and Dlength, as shown by the marginal R2 values (variance explained by fixed effects; R2LMM(m) = 0.028, 0.01 and 0.023, respectively). By contrast, the high conditional R2 values (variance explained by both fixed and random effects; R2LMM(c) = 0.780, 0.845 and 0.643, respectively) indicated that plant species accounted for most variance in the three phenological variables. LMMs were fitted with the R package package lme4 (v.1.1-19)105.

Extended Data Fig. 4 Number of migratory bird species interacting with plants during migration per network in relation to migration direction and biome.

Large dots and bars denote means ± 95% confidence intervals estimated by a GLMM, whereas circles denote values for each seed-dispersal network (n = 26 observations, 13 networks × 2 directions). Only migration direction had significant effects on the number of migratory bird species interacting with plants during migration in the GLMM (Poisson family and log-link function) testing the effects of migration direction (Wald χ2 = 11.08, P = 0.0009), biome (Wald χ2 = 0.17, P = 0.6789) and their interaction (Wald χ2 = 0.02, P = 0.8921). Model estimates ± s.e.: intercept = 2.297 ± 0.156; direction (northward) = –0.500 ± 0.208; biome (temperate) = –0.091 ± 0.215; direction (northward) × biome (temperate) = 0.039 ± 0.288; southward and Mediterranean were used as the reference categories (intercepts) for the factors direction and biome, respectively. A mean of 9.5 bird species per community dispersed plants during their southward migration, but only 5.9 species did so during the northward migration.

Extended Data Fig. 5 Individual and cumulative bird species strengths accumulated across seed-dispersal subnetworks.

a, Bird species strength accumulated across seed-dispersal subnetworks between plants and birds migrating southwards or northwards, and in Mediterranean and temperate biomes; species strength quantifies the relevance of a bird species across the entire fleshy-fruited plant community104 (n = 24 species). Some bird species have stacked values from several subnetworks, whereas other species participated only in a single subnetwork. b, The cumulative species strength across the southward and northward subnetworks were significantly correlated in the Mediterranean (Kendall’s τ = 0.396, P = 0.0129) and the temperate biome (τ = 0.588, P = 0.0006), indicating that bird species generally display a proportional role in both migrations. However, the cumulative species strength in the Mediterranean and temperate biome were not correlated, neither across the northward (τ = 0.276, P = 0.1089) nor across the southward subnetworks (τ = 0.263, P = 0.0764) (correlation between left and right panels in a). These results indicate discordance between biomes in the identity of bird species contributions to community-wide seed dispersal during each migration. Pearson’s r yielded qualitatively similar results, with higher coefficient values in the significant correlations (r = 0.946 and 0.847).

Extended Data Fig. 6 Bioclimate-level plant phenology from several sources.

Subset of 16 out of the 81 plant species present in the study networks illustrating how, in many cases, we obtained data on seed-dispersal phenology from several sources for the same plant species–bioclimate combination. Colour codes denote different data sources. A vertical grey line divides the calendar year.

Extended Data Table 1 Characteristics of the European seed-dispersal networks that we studied
Extended Data Table 2 List of bird and plant species of the 13 study networks
Extended Data Table 3 Significance of the fixed factors migration direction and biome, and their interaction, in GLMMs testing effects on seed-dispersal interactions of plants with migrating birds
Extended Data Table 4 Significance of the fixed factors migration direction and biome, and their interaction, in GLMMs testing effects on the proportion of migratory bird species that were Palaearctic migrants, and in the network-level frequency of seed-dispersal interactions with Palaearctic migrants

Supplementary information

Supplementary Information

This file contains the Supplementary methods, Supplementary Discussions 1-2, Supplementary Figures 1-7 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Varo, J.P., Rumeu, B., Albrecht, J. et al. Limited potential for bird migration to disperse plants to cooler latitudes. Nature 595, 75–79 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing