Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical manipulation of electronic dimensionality in a quantum material

Abstract

Exotic phenomena can be achieved in quantum materials by confining electronic states into two dimensions. For example, relativistic fermions are realized in a single layer of carbon atoms1, the quantized Hall effect can result from two-dimensional (2D) systems2,3, and the superconducting transition temperature can be considerably increased in a one-atomic-layer material4,5. Ordinarily, a 2D electronic system can be obtained by exfoliating the layered materials, growing monolayer materials on substrates, or establishing interfaces between different materials. Here we use femtosecond infrared laser pulses to invert the periodic lattice distortion sectionally in a three-dimensional (3D) charge density wave material (1T-TiSe2), creating macroscopic domain walls of transient 2D ordered electronic states with unusual properties. The corresponding ultrafast electronic and lattice dynamics are captured by time-resolved and angle-resolved photoemission spectroscopy6 and ultrafast electron diffraction at energies of the order of megaelectronvolts7. Moreover, in the photoinduced 2D domain wall near the surface we identify a phase with enhanced density of states and signatures of potential opening of an energy gap near the Fermi energy. Such optical modulation of atomic motion is an alternative path towards realizing 2D electronic states and will be a useful platform upon which novel phases in quantum materials may be discovered.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Time-resolved electronic structure and electron diffraction patterns in TiSe2.
Fig. 2: Experimental and simulated electronic structure and PLD dynamics.
Fig. 3: Photoinduced domain wall.
Fig. 4: Energy gap in the pump-induced domain wall.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Correspondence and requests for materials regarding trARPES experimental data and the simulation should be addressed to W.Z. and regarding UED experimental data should be addressed to D.X.

References

  1. 1.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  CAS  Google Scholar 

  2. 2.

    von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Google Scholar 

  3. 3.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS  CAS  Google Scholar 

  4. 4.

    He, S. L. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yang, Y. et al. A time- and angle-resolved photoemission spectroscopy with probe photon energy up to 6.7 eV. Rev. Sci. Instrum. 90, 063905 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Qi, F. F. et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Horstmann, J. G. et al. Coherent control of a surface structural phase transition. Nature 583, 232–236 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lian, C., Zhang, S.-J., Hu, S.-Q., Guan, M.-X. & Meng, S. Ultrafast charge ordering by self-amplified exciton–phonon dynamics in TiSe2. Nat. Commun. 11, 43 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Trigo, M. et al. Ultrafast formation of domain walls of a charge density wave in SmTe3. Phys. Rev. B 103, 054109 (2021).

    ADS  CAS  Google Scholar 

  21. 21.

    Yusupov, R. et al. Coherent dynamics of macroscopic electronic order through a symmetry-breaking transition. Nat. Phys. 6, 681–684 (2010).

    CAS  Google Scholar 

  22. 22.

    Huber, T. et al. Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. Phys. Rev. Lett. 113, 026401 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Di Salvo, F. J., Moncton, D. E. & Waszczak, J. V. Electronic properties and superlattice formation in the semimetal TiSe2. Phys. Rev. B 14, 4321–4328 (1976).

    ADS  Google Scholar 

  24. 24.

    Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe2. Phys. Rev. Lett. 99, 146403 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Möhr-Vorobeva, E. et al. Nonthermal melting of a charge density wave in TiSe2. Phys. Rev. Lett. 107, 036403 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Hildebrand, B. et al. Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave. Phys. Rev. Lett. 120, 136404 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Pillo, T. et al. Photoemission of bands above the Fermi level: the excitonic insulator phase transition in 1T-TiSe2. Phys. Rev. B 61, 16213–16222 (2000).

    ADS  CAS  Google Scholar 

  29. 29.

    Watson, M. D. et al. Orbital-and k(z)-selective hybridization of Se 4p and Ti 3d states in the charge density wave phase of TiSe2. Phys. Rev. Lett. 122, 076404 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Porer, M. et al. Non-thermal separation of electronic and structural orders in a persisting charge density wave. Nat. Mater. 13, 857–861 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hedayat, H. et al. Excitonic and lattice contributions to the charge density wave in 1T-TiSe2 revealed by a phonon bottleneck. Phys. Rev. Res. 1, 023029 (2019).

    CAS  Google Scholar 

  33. 33.

    Holy, J. A., Woo, K. C., Klein, M. V. & Brown, F. C. Raman and infrared studies of superlattice formation in TiSe2. Phys. Rev. B 16, 3628–3637 (1977).

    ADS  CAS  Google Scholar 

  34. 34.

    Snow, C. S., Karpus, J. F., Cooper, S. L., Kidd, T. E. & Chiang, T. C. Quantum melting of the charge-density-wave state in 1T-TiSe2. Phys. Rev. Lett. 91, 136402 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Schaefer, H., Kabanov, V. V. & Demsar, J. Collective modes in quasi-one-dimensional charge-density wave systems probed by femtosecond time-resolved optical studies. Phys. Rev. B 89, 045106 (2014).

    ADS  Google Scholar 

  36. 36.

    Joe, Y. I. et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2. Nat. Phys. 10, 421–425 (2014).

    CAS  Google Scholar 

  37. 37.

    Yan, S. C. et al. Influence of domain walls in the incommensurate charge density wave state of Cu-intercalated 1T-TiSe2. Phys. Rev. Lett. 118, 106405 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Li, S. Y., Wu, G., Chen, X. H. & Taillefer, L. Single-gap s-wave superconductivity near the charge-density-wave quantum critical point in CuxTiSe2. Phys. Rev. Lett. 99, 107001 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Norman, M. R. et al. Destruction of the Fermi surface underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    ADS  CAS  Google Scholar 

  42. 42.

    Bayliss, S. C. & Liang, W. Y. Reflectivity, joint density of states and band structure of group IVb transition-metal dichalcogenides. J. Phys. C 18, 3327–3335 (1985).

    ADS  CAS  Google Scholar 

  43. 43.

    McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187–1196 (1975).

    ADS  CAS  Google Scholar 

  44. 44.

    Strocov, V. N. et al. Three-dimensional electron realm in VSe2 by soft-X-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    CAS  Google Scholar 

  46. 46.

    Shen, Z.-X. et al. Anomalously large gap anisotropy in the ab plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).

    CAS  Google Scholar 

  48. 48.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS  MathSciNet  Google Scholar 

  49. 49.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS  MathSciNet  Google Scholar 

  50. 50.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  51. 51.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Google Scholar 

  52. 52.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Google Scholar 

  53. 53.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

W.Z. acknowledges support from the Ministry of Science and Technology of China (2016YFA0300501) and the National Natural Science Foundation of China (11974243), and additional support from a Shanghai talent programme. Y.G. acknowledges support from the National Natural Science Foundation of China (grant no. 11874264). D.Q. acknowledges support from the Ministry of Science and Technology of China (grant no. 2016YFA0301003). D.Q. and W.L. acknowledge support from the National Natural Science Foundation of China (grant nos 12074248 and 11521404). D.X. and J.Z. acknowledge support from the National Natural Science Foundation of China (grant nos 11925505, 11504232 and 11721091) and from the office of Science and Technology, Shanghai Municipal Government (nos 16DZ2260200 and 18JC1410700). First-principles computations were performed at the Center for High Performance Computing of Shanghai Jiao Tong University.

Author information

Affiliations

Authors

Contributions

W.Z. and D.X. proposed and designed the research. S.D., Y.Y., C.H., T.T. and W.Z. contributed to the development and maintenance of the trARPES system. S.D., Y.Y. and C.H. collected the trARPES data. Y.C. and F.Q. took the UED measurements. W.X. and Y.G. prepared the single-crystal sample. S.D., Y.C., D.X. and W.Z. performed the phenomenological simulation. C.X. and W.L. performed the DFT calculation. W.Z. wrote the paper with S.D., Y.C., W.L., D.Q., D.X. and J.Z. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dao Xiang or Wentao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Claude Monney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Simulated and experimental electron diffraction patterns in TiSe2.

a, b, Simulated and experimental electron diffraction patterns based on the kinetical theory with the sample thickness of 60 nm. c, Experimental diffraction patterns at 12 ps with a tilted angle. Data were taken with the same pump fluence and equilibrium temperature as in Fig. 1d. The intensity units on the colour scale are arbitrary.

Extended Data Fig. 2 Ultrafast electronic dynamics.

a, Time-dependent photoemission spectroscopy intensity at different pump fluences. The intensity is the integration of non-equilibrium electrons between 0 and 0.03 eV above the Fermi energy. b, The decay rates of nonequilibrium electrons as a function of pump fluence. The three different regions separated by the two critical pump fluences are indicated by different colours in the background.

Extended Data Fig. 3 Additional measurements on two other samples (samples II and III).

a, Spectral intensity as a function of the pump fluence integrated from −0.1 eV (Se 4px,y band top) to the Fermi level for samples II and III at a delay time of 12 ps. b, Photoemission spectra difference between fluences I′ and I (I(I) − I(I′)) from 3 to 40 ps for sample II. The colour scale is in arbitrary units, and ‘–’ (green) indicates <0 and ‘+’ (red) indicates >0. c, EDCs at the momentum of the dashed line shown in the inset of Fig. 4b for pump fluences at I′ and I for samples II and III. EDCs are normalized to the same height. d, Spectral intensity as a function of the pump fluence integrated from −0.1 eV (Se 4px,y band top) to the Fermi level for sample II. e, Original EDCs without normalization between 3 and 40 ps for sample II. f, Normalized EDCs from e.

Extended Data Fig. 4 DFT calculations and experimental electronic structures of the bulk and 2D domain wall.

a, Charge density isosurface plot of the domain-wall bands at the Γ point. The Ti and Se atoms are shown in blue and green spheres, and the outer and inner surfaces of the density state isosurface on the domain wall are shown in purple and blue. b, Band structure of the periodic eight-layer supercell with domain wall. The px and py orbitals are projected to the three layers at the domain wall (shown in red circles); the symbol size denotes the relative weight of the orbitals. The reference bands are drawn in orange lines. c, Energy shifts of the domain-wall bands at different strengths of CDW displacements. The label ‘CDW’ means a single CDW phase, and ‘domain’ means the presence of sharp domain wall. d, Time-resolved photoemission spectra at 12 ps for pump fluences at I′ and I, as indicated in the inset to e. e, EDCs at the momentum of −0.13 Å−1 for pump fluence I′ and I, as indicated by the solid line cuts (the same colour as the corresponding EDC) in d. Inset shows the same spectra at 12 ps for sample II as that shown in Extended Data Fig. 3a. EDCs are normalized to the same height.

Supplementary information

Supplementary Information

This Supplementary Information file contains sections (I) Numerical solution of the motion equation; and (II) Pump probe fluence resolution; including Supplementary figure 1 and 2.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Cheng, Y., Xia, W. et al. Optical manipulation of electronic dimensionality in a quantum material. Nature 595, 239–244 (2021). https://doi.org/10.1038/s41586-021-03643-8

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing