Abstract
Perceptual constancy requires the brain to maintain a stable representation of sensory input. In the olfactory system, activity in primary olfactory cortex (piriform cortex) is thought to determine odour identity^{1,2,3,4,5}. Here we present the results of electrophysiological recordings of single units maintained over weeks to examine the stability of odourevoked responses in mouse piriform cortex. Although activity in piriform cortex could be used to discriminate between odorants at any moment in time, odourevoked responses drifted over periods of days to weeks. The performance of a linear classifier trained on the first recording day approached chance levels after 32 days. Fear conditioning did not stabilize odourevoked responses. Daily exposure to the same odorant slowed the rate of drift, but when exposure was halted the rate increased again. This demonstration of continuous drift poses the question of the role of piriform cortex in odour perception. This instability might reflect the unstructured connectivity of piriform cortex^{6,7,8,9,10,11,12}, and may be a property of other unstructured cortices.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our bestvalue onlineaccess subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
 Purchase on Springer Link
 Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data will be made available upon reasonable request to the corresponding authors.
Code availability
Code will be made available upon reasonable request to the corresponding authors.
References
Haberly, L. B. Single unit responses to odor in the prepyriform cortex of the rat. Brain Res. 12, 481–484 (1969).
Kadohisa, M. & Wilson, D. A. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc. Natl Acad. Sci. USA 103, 15206–15211 (2006).
Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).
Miura, K., Mainen, Z. F. & Uchida, N. Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74, 1087–1098 (2012).
Bolding, K. A. & Franks, K. M. Recurrent cortical circuits implement concentrationinvariant odor coding. Science 361, eaat6904 (2018).
Haberly, L. B. & Price, J. L. The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res. 129, 152–157 (1977).
Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).
Miyamichi, K. et al. Cortical representations of olfactory input by transsynaptic tracing. Nature 472, 191–196 (2011).
Ghosh, S. et al. Sensory maps in the olfactory cortex defined by longrange viral tracing of single neurons. Nature 472, 217–220 (2011).
Davison, I. G. & Ehlers, M. D. Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex. Neuron 70, 82–94 (2011).
Johnson, D. M., Illig, K. R., Behan, M. & Haberly, L. B. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J. Neurosci. 20, 6974–6982 (2000).
Franks, K. M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49–56 (2011).
Gilbert, C. D. & Wiesel, T. N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).
Rose, T., Jaepel, J., Hübener, M. & Bonhoeffer, T. Cellspecific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352, 1319–1322 (2016).
Clark, S. A., Allard, T., Jenkins, W. M. & Merzenich, M. M. Receptive fields in the bodysurface map in adult cortex defined by temporally correlated inputs. Nature 332, 444–445 (1988).
Margolis, D. J. et al. Reorganization of cortical population activity imaged throughout longterm sensory deprivation. Nat. Neurosci. 15, 1539–1546 (2012).
Mayrhofer, J. M., Haiss, F., Helmchen, F. & Weber, B. Sparse, reliable, and longterm stable representation of periodic whisker deflections in the mouse barrel cortex. Neuroimage 115, 52–63 (2015).
Weinberger, N. M., Javid, R. & Lepan, B. Longterm retention of learninginduced receptivefield plasticity in the auditory cortex. Proc. Natl Acad. Sci. USA 90, 2394–2398 (1993).
Kato, H. K., Gillet, S. N. & Isaacson, J. S. Flexible sensory representations in auditory cortex driven by behavioral relevance. Neuron 88, 1027–1039 (2015).
Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).
Bhalla, U. S. & Bower, J. M. Multiday recordings from olfactory bulb neurons in awake freely moving rats: spatially and temporally organized variability in odorant response properties. J. Comput. Neurosci. 4, 221–256 (1997).
Kato, H. K., Chu, M. W., Isaacson, J. S. & Komiyama, T. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 76, 962–975 (2012).
Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).
Wilson, C. D., Serrano, G. O., Koulakov, A. A. & Rinberg, D. A primacy code for odor identity. Nat. Commun. 8, 1477 (2017).
Chestek, C. A. et al. Singleneuron stability during repeated reaching in macaque premotor cortex. J. Neurosci. 27, 10742–10750 (2007).
Flurkey, K., Currer, J. M. & Harrison, D. E. in The Mouse in Biomedical Research 637–672 (Elsevier, 2007).
Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).
Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, e10989 (2016).
Fink, A. J., Axel, R. & Schoonover, C. E. A virtual burrow assay for headfixed mice measures habituation, discrimination, exploration and avoidance without training. eLife 8, e45658 (2019).
Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).
Rule, M. E., O’Leary, T. & Harvey, C. D. Causes and consequences of representational drift. Curr. Opin. Neurobiol. 58, 141–147 (2019).
Káli, S. & Dayan, P. Offline replay maintains declarative memories in a model of hippocampalneocortical interactions. Nat. Neurosci. 7, 286–294 (2004).
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Longterm stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).
Brette, R. Is coding a relevant metaphor for the brain? Behav. Brain Sci. 42, e215 (2018).
Roxin, A. & Fusi, S. Efficient partitioning of memory systems and its importance for memory consolidation. PLOS Comput. Biol. 9, e1003146 (2013).
McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).
Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42, 283–295 (2004).
Mankin, E. A. et al. Neuronal code for extended time in the hippocampus. Proc. Natl Acad. Sci. USA 109, 19462–19467 (2012).
Rubin, A., Geva, N., Sheintuch, L. & Ziv, Y. Hippocampal ensemble dynamics timestamp events in longterm memory. eLife 4, e12247 (2015).
Lee, J. S., Briguglio, J. J., Cohen, J. D., Romani, S. & Lee, A. K. The statistical structure of the hippocampal code for space as a function of time, context, and value. Cell 183, 620–635.e22 (2020).
Rokni, U., Richardson, A. G., Bizzi, E. & Seung, H. S. Motor learning with unstable neural representations. Neuron 54, 653–666 (2007).
Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017).
Tolias, A. S. et al. Recording chronically from the same neurons in awake, behaving primates. J. Neurophysiol. 98, 3780–3790 (2007).
Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo twophoton imaging. Nat. Methods 5, 805–811 (2008).
Jeon, B. B., Swain, A. D., Good, J. T., Chase, S. M. & Kuhlman, S. J. Feature selectivity is stable in primary visual cortex across a range of spatial frequencies. Sci. Rep. 8, 15288 (2018).
White, E. L. Thalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex. Brain Res. 180, 275–311 (1979).
Marks, T. D. & Goard, M. J. Stimulusdependent representational drift in primary visual cortex. Preprint at https://doi.org/10.1101/2020.12.10.420620 (2020).
Cui, X., Wiler, J., Dzaman, M., Altschuler, R. A. & Martin, D. C. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777–787 (2003).
Ludwig, K. A. et al. Poly(3,4ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural Eng. 8, 014001 (2011).
Okun, M., Lak, A., Carandini, M. & Harris, K. D. Long term recordings with immobile silicon probes in the mouse cortex. PLoS ONE 11, e0151180 (2016).
Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized highdensity probe for stable, longterm brain recordings. Science 372, eabf4588 (2021).
Cladé, P. PyDAQmx: a Python Interface to the National Instruments DAQmx Driver http://pythonhosted.org/PyDAQmx/ (2010).
Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. in Adv. Neural Information Processing Systems 4448–4456 (NeurIPS, 2016).
Dickey, A. S., Suminski, A., Amit, Y. & Hatsopoulos, N. G. Singleunit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102, 1331–1339 (2009).
Dhawale, A. K. et al. Automated longterm recording and analysis of neural activity in behaving animals. eLife 6, e27702 (2017).
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R. & Lin, C.J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008).
PerezOrive, J. et al. Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002).
Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. Neurophysiol. 73, 713–726 (1995).
Willmore, B. & Tolhurst, D. J. Characterizing the sparseness of neural codes. Network 12, 255–270 (2001).
Lein, E. S. et al. Genomewide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).
Acknowledgements
We thank L. F. Abbott, S. R. Datta, S. Fusi, J. W. Krakauer, A. Kumar, M. A. Long, A. M. Michaiel, and S. L. Pashkovski for comments on the manuscript; G. W. Johnson and T. Tabachnik for assistance with instrumentation; G. Buzsáki and members of the Buzsáki laboratory, D. A. Gutnisky, and C. C. Rodgers for experimental advice; the instructors of the 2015 Advanced Course in Computational Neuroscience at the Champalimaud Foundation for instruction; D. F. Albeanu and members of the Albeanu laboratory, D. Aronov, K. A. Bolding, R. Costa, J. P. Cunningham, J. T. Dudman, W. M. Fischler, K. M. Franks, M. E. Hasselmo, V. Jayaraman, A. Y. Karpova, E. Marder, J. A. Miri, C. Poo, D. Rinberg and members of the Rinberg laboratory, E. S. Schaffer, and D. D. Stettler for comments; M. Gutierrez, C. H. Eccard, P. J. Kisloff, and A. Nemes for general laboratory support; and the Howard Hughes Medical Institute and the Helen Hay Whitney Foundation for financial support.
Author information
Authors and Affiliations
Contributions
This work is the result of a close collaboration between C.E.S. and A.J.P.F., who conceived the study and designed the experiments. Experiments were performed by C.E.S., S.N.O. and A.J.P.F. The data were analysed and the manuscript was written by C.E.S, R.A. and A.J.P.F.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Longitudinal tracking of single units in piriform cortex.
a, Chronic silicon probe implantation in anterior piriform cortex (green). Anatomical image and structure designations from the Allen Mouse Brain Atlas^{60} (http://www.brainmap.org). Inset, probe diagram with relative positions of the 32 recording electrodes; red, DiI marking probe position; black, cell bodies (NeuroTrace). Diagrams not to scale. b, Number of single units retained as a function of recording interval duration. Mean ± s.d. with individual data points; blue dotted line, linear regression; blue shading, 95% CI. ρ = −0.41, P = 1.2 × 10^{−3}, n = 24 recordings across 8 days, n = 18 recordings across 16 days, n = 12 recordings across 24 days, n = 6 recordings across 32 days, all from 6 mice. c, Singleunit yield for singleday record sessions. Left, per recording session as a function of time since probe implantation. Blue dotted line, linear regression; blue shading, 95% CI. ρ = −0.12, P = 0.23. Right, singleunit yields across all singleday recording sessions (n = 97 recording sessions in 16 mice). d, Left, probability density of waveform similarities for all pairs of single units simultaneously recorded within each day. Red dashed line indicates inclusion criterion (0.93, the distribution’s 99th percentile) for rejection of candidate single units recorded across multiple days. Right, probability density of refractory period violations (refractory period is defined as an interspike interval <1.5 ms). e, Average waveforms for a representative single unit recorded at each of the recording sites of the silicon probe. Waveforms from all days (0–32) are superimposed with each day plotted as a separate colour (colour scheme maintained throughout). Inset e,i, mean waveforms for days 0, 8, 16, 24, and 32 for a subset of recording sites, indicated by the grey box. Inset e,ii, mean waveforms for days 0 to 32, superimposed for a single recording site (dashed grey box). f, Waveform correlations for each single unit across days 0 and 32 (red) and across all single units withinday (grey); withinunit, acrossdays versus withinday, acrossunits, P = 4.8 × 10^{−246}, Wilcoxon ranksum, n = 379 single units from 6 mice. The grey distribution is replotted from d (left). g, Singleunit waveform centroids across a 32day interval from a representative mouse (centroid computed using spatial average across electrode positions weighted by the squared mean waveform amplitude at each electrode). Centroid for each single unit isolated on day 0 (blue circles) and days 8, 16, 24, and 32 (red circles, columns 1–4, respectively; days 0 versus 8, n = 100 single units; days 0 versus 16, n= 94 single units; days 0 versus 24, n = 84 single units; days 0 versus 32, n = 77 single units). Grey circles indicate the positions and sizes of the probe’s 32 electrode sites. h, Mean displacement of singleunit centroids from this mouse between day 0 (blue circle, defined at origin) and days 8, 16, 24, and 32 (red circles, columns 1–4, respectively). Grey contours indicate quintile boundaries of the distribution of centroid position displacement for the population. i, Top, cumulative distribution of withinunit centroid displacement (red) between day 0 and days 8, 16, 24, and 32 (columns 1–4, respectively) and acrossunit centroid displacement within day (black) for this mouse. Median on day 0 versus 8 withinunit = 1.8 μm (Q1 = 1.1 μm, Q3 = 2.9 μm), acrossunit = 63.5 μm (Q1 = 31.5 μm, Q3 = 107 μm); day 0 versus 16 withinunit = 2.1 μm (Q1 = 1.3 μm, Q3 = 3.2 μm), acrossunit = 64.2 μm (Q1 = 32.0 μm, Q3 = 108 μm); day 0 versus 24 withinunit = 2.6 μm (Q1 = 1.5 μm, Q3 = 3.5 μm), acrossunit = 64.4 μm (Q1 = 32.2 μm, Q3 = 108 μm); day 0 versus 32 withinunit = 2.8 μm (Q1 = 2.2 μm, Q3 = 4.2 μm), acrossunit = 64.5 μm (Q1 = 32.1 μm, Q3 = 108 μm); for all comparisons P < 9.5 × 10^{−51}, Wilcoxon ranksum, n as in g. Inset at bottom, xaxis 0 to 10 μm.
Extended Data Fig. 2 Assessing the stability of single units recorded across multiple days.
a, b, Experiment time courses for 16day (a) and 32day (b) interval protocols. ‘Recovery’, period following headplate attachment and stereotactic targeting before silicon probe implantation to allow full recovery; ‘settling’, minimum fiveweek period after probe implantation to permit tissue settling and signal stabilization; ‘monitor’, minimum tenday period during which neural signals were recorded daily to assess signal stability. Experiments began only once single units could be reliably tracked across days. ‘Record’, experiment protocol (Figs. 1a, 4a, c). ‘Familiarization’ (16day interval experiments in a only), daily odorant presentation for experiments described in Fig. 4c, d and Extended Data Fig. 10d–h. c, For single units held during 16day interval experiments, waveform similarity (left; Pearson’s correlation), centroid displacement (middle), and spike time ACG distance (right; Euclidean norm between normalized ACGs) measured between day 0 and subsequent days (red, ‘withinunit, acrossday’) and across all single units within each day (black, ‘acrossunit, withinday’). Dotted lines, median. Shading, boundaries of top and bottom quartiles (n = 690 single units from 7 mice). d, As in c but for single units held during 32day interval experiments (n = 379 single units from 6 mice). e, Example spike–time autocorrelograms from two single units recorded in the same mouse on five separate days. f, Density heatmap showing ACG distance of pairs of simultaneously recorded single units plotted against waveform similarity (left) and distance between their centroids (right) for those pairs. Top, 16day interval experiments (n = 1,248,216 pairs of single units from 7 mice on 17 days); bottom, 32day interval experiments (n = 841,138 pairs of single units from 6 mice on 33 days). This shows that waveformbased features (waveform similarity and centroid distance) vary independently of the similarity of the spike–time ACGs. Thus, ACG distance is a measure of singleunit stability to which the spikesorting pipeline is insensitive. g, Waveform similarity (top), centroid distance (middle), and ACG distance (bottom) for a given single unit between days 0 and 32, plotted against the same metric applied to the same single unit versus the most similar other simultaneously recorded single unit. Dashed line, unity. h, Mean single unit spontaneous firing rate on an individual day (baseline firing rate) compared across intervals of 8 days (ρ = 0.89, n = 2,177 single units), 16 days (ρ = 0.82, n = 1,412 single units), 24 days (ρ = 0.74, n = 816 single units) and 32 days (ρ = 0.68, n = 379 single units) from 6 mice. For all correlations, P < 4.0 × 10^{−52}. Each plot shows a random subset of 379 single units, to match the number of single units recorded across the 32day interval (right). Black dashed line, unity; blue dotted line, linear regression; blue shading, 95% CI. i, Odour response similarity plotted against change in mean spontaneous firing rate on a symlog scale (left; ρ = −0.041, P = 0.43) and absolute spontaneous firing rate on a log scale (right; ρ = 0.087, P = 0.09) across a 32day interval (n = 379 single units from 6 mice). Blue dotted line, linear regression; blue shading, 95% CI. j, For single units held during 16day interval experiments, waveform similarity (left), centroid displacement (middle) and ACG distance (right) measured between days 0 and 16, plotted against odour response similarity of that same single unit (Pearson’s correlation of pairs of vectors computed on the two days, consisting of the response magnitudes for each odorant of a panel); black circles, individual units; blue dotted line, linear regression; blue shading, 95% CI. k, As in j but for single units held during 32day interval experiments, plotting these features measured between days 0 and 32.
Extended Data Fig. 3 A single unit is more similar to itself across days than to any other single unit on the probe.
a, Bottom, single unit recorded on day 32 (red, same as shown in Extended Data Fig. 1e) overlaid with the five most similar single units to it recorded on the same day (black), as measured by waveform similarity (Pearson’s correlation between waveforms). Top, spike–time cross correlograms between the example single unit and each of the five most similar single units. The absence of a dip in cross correlogram amplitude at the 0ms time lag (refractory period violations) indicates that the example single unit and each of the five most similar single units correspond to distinct neurons. b, Top, for single units held across days, waveform similarity measured on day 0 versus subsequent days (red; withinunit, acrossdays), and waveform similarity measured between a given single unit and the ten single units most similar to it within a given day (blue; acrossunits, withinday). Dotted line, median. Shading, top and bottom quartiles. Bottom, cumulative distributions (left, full distribution; inset at right, expanded xaxis) withinunit for day 0 versus day 16 (red), ten most similar single units within a day (blue), one most similar single unit within a day (cyan). Median withinunit waveform similarity between day 0 and day 16, 0.98 (Q1 = 0.97, Q3 = 0.99); median acrossunit waveform similarity with the ten most similar, 0.86 (Q1 = 0.80, Q3 = 0.90); median acrossunit waveform similarity with the one most similar, 0.94 (Q1 = 0.91, Q3 = 0.95). c, d, Same analysis as in b but for centroid displacement and spike–time ACG distance (Euclidean norm between normalized ACGs), respectively. c, Median withinunit displacement between day 0 and day 16, 2.9 μm (Q1 = 1.6 μm, Q3 = 5.0 μm); median acrossunit distance from the ten most similar, 11.2 μm (Q1 = 6.9 μm, Q3 = 16.5 μm); median acrossunit distance from the one most similar, 6.1 μm (Q1 = 3.6 μm, Q3 = 9.3 μm). d, Median withinunit ACG distance between day 0 and day 16, 0.018 (Q1 = 0.012, Q3 = 0.028); median acrossunit ACG distance for the ten most similar, 0.047 (Q1 = 0.031, Q3 = 0.069); median acrossunit ACG distance for the one most similar, 0.044 (Q1 = 0.030, Q3 = 0.064). e–g, As in b–d but for the experiments performed across a 32day interval. e, Median withinunit waveform similarity between day 0 and day 32, 0.97 (Q1 = 0.96, Q3 = 0.98); median acrossunit waveform similarity with the ten most similar, 0.87 (Q1 = 0.82, Q3 = 0.91); median acrossunit waveform similarity with the one most similar, 0.93 (Q1 = 0.91, Q3 = 0.96). f, Median withinunit displacement between day 0 and day 32, 3.5 μm (Q1 = 2.1 μm, Q3 = 5.6 μm); median acrossunit distance from ten most similar, 11.2 μm (Q1 = 6.9 μm, Q3 = 16.7 μm); median acrossunit distance from one most similar, 7.3 μm (Q1 = 4.6 μm, Q3 = 10.7 μm). g, Median withinunit ACG distance between day 0 and day 32, 0.024 (Q1 = 0.016, Q3 = 0.038); median acrossunit ACG distance for the ten most similar, 0.048 (Q1 = 0.032, Q3 = 0.072); median ACG distance for the one most similar, 0.050 (Q1 = 0.030, Q3 = 0.077). All withinunit metrics are significantly different from acrossunit metrics (P < 1.4 × 10^{−60}, Wilcoxon ranksum), for both the one most and ten most similar comparisons, across both the 16day (n = 690 single units from 7 mice) and 32day (n = 379 single units from 6 mice) interval experiments. Thus, a single unit is more similar to itself across days than it is even to those single units most similar to it recorded within a given day. h–j, Receiver operator characteristic (ROC) curves showing the true positive rate versus the false positive rate for waveform similarity (h), centroid displacement (i) and ACG distance (j) for both 16day and 32day intervals for the ten most (blue) and one most (cyan) similar units. When computing the ROC, ‘signal’ was defined as the distribution with the higher mean. Dashed line corresponds to unity.
Extended Data Fig. 4 Evoked responses in single units across days.
a, Activity of eight single units across a 32day interval selected to illustrate the diversity of odourevoked response profiles across single units within each day and within individual single units across days. Columns separate test odorants (chemical names, top). Spike rasters (rows: 7 trials per day) and PSTHs are coloured by day as indicated. Horizontal black bars, 4s odorant stimulus epochs. The singleunit responses to individual stimuli shown in Fig. 1b are replotted here alongside responses for those single units to the seven other stimuli in the panel: Fig. 1b, left: unit 1, stimulus 7 (linalool oxide); Fig. 1b, middle: unit 2, stimulus 5 (nerol); Fig. 1b, right: unit 3, stimulus 2 (geranyl nitrile). b, zscored odourevoked activity of 300 randomly selected odour–unit pairs during the 4s odorant stimulus epoch (black bars), ordered differently in each panel. Left, ordered by odour response magnitude on day 0 (replotted from Fig. 1c); middle, ordered by odour response magnitude on day 32; right, ordered by odour response magnitude individually on each day.
Extended Data Fig. 5 Selective odour responses with stable withinday statistics and acrossday drift in piriform cortex.
a, b, Fraction of single units that exhibit a significant modulation (a) and an increase (red) or decrease (blue) (b) in firing rate during the odorant stimulus epoch in response to 0–8 odorants (Wilcoxon ranksum on firing rate during the odorant stimulus epoch versus spontaneous baseline firing rate, α = 0.001). c, Cumulative distributions (left) and mean coefficient of variation (c_{v}; right) of response magnitude computed on each odour test day across all trials for each odour–unit pair. Mean (95% CI) across days, c_{v} = 0.88 (0.87, 0.89), n = 19,356 odour–unit pairs. d, Cumulative distributions (left) and mean fraction of responses preserved per responsive single unit (right) across 8–32day intervals (8 days: 35.0% (27.3%, 42.5%), 16 days: 19.8% (13.5%, 27.5%), 24 days: 16.9% (10.3%, 26.7%), 32 days: 6.6% (1.9%, 17.5%); ρ = –0.25, P = 5 × 10^{−6}, n = 318 single units). Nonresponsive and broadly responsive single units were excluded from the analysis by setting a threshold on lifetime sparseness (0.65). e, Left, fraction of preserved responses per single unit across 32 days versus lifetime sparseness threshold. Right, fraction of single units stable across 32 days versus lifetime sparseness threshold. A single unit was considered stable over 32 days if all significantly modulated responses to the odorant panel were preserved. These quantities do not depend on lifetime sparseness threshold (0.2–0.65, 40th–95th percentile across all single units). f, Classification accuracy (8way, SVM, linear kernel, L2 regularization, trained and tested on data stitched across 3 mice, random draws of 231 single unit subsets from 286 total single units to avoid saturation, 1s sliding window, 250ms steps). Grey box, 4s odorant stimulus epoch; vertical dotted line, onset of odour response at odour port (mean time across all stimuli at which the PID signal reached 5% of maximum); horizontal dashed line, chance performance for 8way classification. g, Classification performance for fifteen temporal binnings of the odour response epoch, measured by maximum classification accuracy (top) and number of single units required to reach 50% of maximum accuracy (bottom) (n = 286 single units recorded withinday, stitched across 3 mice). Black shading, binning used for all subsequent classification and for computation of pairwise population vector correlations, angles and drift rate, unless otherwise indicated. For classification using single bins, the window start was set to 500 ms after stimulus initiation so the quantification windows did not begin before odorant stimulus onset as measured by the PID signal. h, Classification accuracy as a function of number of single units used, using the highest performance binning in g (four 2s bins). Dashed arrow, number (21) of single units required to achieve >50% classification accuracy. i, Classification accuracy for a classifier trained on earlier days and tested on later days (‘Forward’, replotted from Fig. 2b) compared with a model trained on later days and tested on earlier day (‘Reverse’). Dotted lines, mean; shading, s.d.; limit of 41 single units per animal with 100 permutations. j, Classification accuracy of a classifier trained on responses on day 24 alone (all 56 trials) and tested on day 32 compared with a model trained on 75 random subsets of 56 trials drawn from days 0–24 and tested on day 32; P = 2.6 × 10^{−5}, Wilcoxon ranksum, 100 random subsets of 23 single units per mouse. A classifier trained on concatenated data from days 0–24 will assign high weights to single units with stable (less variable) responses across all days and low weights to single units whose responses varied. Thus, if there is a special population of neurons whose responses are informative about stimulus class and are more stable than others, a model trained on a concatenation of days 0 through 24 ought to perform better when tested on day 32 than a model trained on day 24 alone. However, we do not observe this: thus, it is not possible to establish single units that are most informative about odour identity on day 32 based on their responses across days 0–24. This finding argues against the presence of an informative stable subpopulation. k, Representational drift between a pair of days can be estimated by measuring the difference in odourevoked population responses across days after correcting for withinday variability^{25}. Top left, variability across days (acrossday drift + withinday variability), estimated by computing the angle (θ_{p,q}) between trialaveraged population vectors u_{p} and u_{q} for each odour across each pair of days p and q. Bottom left, variability within a day (noise), estimated by measuring the mean of the angle between the trialaveraged population vectors (\(\bar{\theta }\)) for each odour within each day on odd trials versus even trials (θ_{k}, over all days k). Right, the drift rate (r_{p,q}) is the corrected angle \(({\theta }_{p,q}\,\bar{\theta }\)) divided by the time between days p and q (Δt_{p,q}). l, Cumulative distributions (left) and mean angles (right) between trialaveraged population vectors withinday and across 8–32day intervals (n = 180, n = 144, n = 108, n = 72 and n = 36 pairs, respectively). Blue dotted line, exponential regression fit with \(\theta \,=\,C\,\,(CR)\,{e}^{\frac{t}{\tau }}\), where \(\theta \) is the variability (angle), C the asymptote, R the intercept at t = 0 (withinday variability), and τ the time constant of the exponential in days. The mean rate of change of the exponential fit over the 32day interval is 1.0 ° per day. m, Cumulative distributions (left) and mean withinday angles (right) between trialaveraged population vectors (n = 72 pairs per day). No pair of withinday angles differs significantly (P ≥ 0.56 for all pairs, Wilcoxon ranksum). Black crosses, mean ± 95% CI; blue dotted line, linear regression; blue shading, 95% CI. Classification performed on the three mice presented with an eightodorant panel. Otherwise, n = 6 mice.
Extended Data Fig. 6 Odorant stimuli.
a, PID signals for an example odorant (anisole) across a 32day interval from a single experiment. Black traces, individual trials; red traces, withinday mean (n = 7 trials). b, Example PID traces for all other odorant stimuli used in this study. Black traces, individual trials on one day; red, mean (n = 7 trials). c, Mean PID amplitude across all intervals for experiments in which odorants were presented every 8 days. PID amplitude for a given odorant stimulus is highly correlated across sessions (8day interval, ρ = 0.99, P = 6.9 × 10^{−276}, n = 288 comparisons; 16day interval, ρ = 0.99, P = 7.9 × 10^{−166}, n = 208 comparisons; 24day interval, ρ = 0.98, P = 6.2 × 10^{−94}, n = 128 comparisons; 32day interval, ρ = 0.98, P = 3.7 × 10^{−46}, n = 64 comparisons). d, Left, coefficient of variation of PID amplitude across all trials for each odorant for experiments in which odorants were presented every 8 days (median across all odorants: c_{v} = 0.02, (Q1 = 0.01, Q3 = 0.04), n = 400 mean odorant stimulus pulses computed across 2,800 individual trials for 12 distinct odorants). Middle, rise time (median across all odorants 0.47 s (Q1 = 0.21, Q3 = 1.0 s)). Right, decay time of PID signal (median across odorants 0.51 s (Q1 = 0.21 s, Q3 = 1.3 s)). PID signal onset was defined as the time required to reach 5% of maximum on each trial. PID rise time was defined as the time between onset and 66% of maximum on each trial; PID decay time was defined as the time between 95% and 33% of maximum after stimulus offset. Anisole n = 350 trials, 50 days; isopentyl acetate n = 231 trials, 33 days; ethyl trans3hexenoate n = 350 trials, 50 days; octanal n = 245 trials, 35 days; linalool oxide 231 trials, 33 days; cis3hexen1ol n = 245 trials, 35 days; geranyl nitrile n = 168 trials, 24 days; cuminaldehyde n = 168 trials, 24 days; R(−)carvone n = 63 trials, 9 days; methyl salicylate n = 63 trials, 9 days; decanal n = 231 trials, 33 days; nerol n = 231 trials, 33 days. Grey bars, mean across all experiments by odorant; black bars, 95% CI. e, Corrected angle as a function of interval for each odorant stimulus used in 32day interval experiments. Black crosses, mean ± 95% CI. Decanal: corrected angle correlation across intervals, ρ = 0.63, P = 3.5 × 10^{−6} and drift rate, 0.8 (0.5 – 1.1)° per day (n = 45 population vector pairs from 3 mice). Isopentyl acetate: corrected angle correlation across intervals, ρ = 0.63, P = 2.3 × 10^{−11} and drift rate, 1.0 (0.8 – 1.3)° per day (n = 90 population vector pairs from 6 mice). cis3Hexen1ol: corrected angle correlation across intervals, ρ = 0.87, P = 1.7 × 10^{−14} and drift rate, 1.0 (0.7 – 1.3)° per day (n = 45 population vector pairs from 3 mice). Ethyl trans3hexenoate: corrected angle correlation across intervals, ρ = 0.766, P = 1.3 × 10^{−9} and drift rate, 1.3 (1.1 – 1.6)° per day (n = 45 population vector pairs from 3 mice). Linalool oxide: corrected angle correlation across intervals, ρ = 0.70, P = 1.7 × 10^{−14} and drift rate, 1.5 (1.2 – 1.8)° per day (n = 90 population vector pairs from 6 mice). Nerol: corrected angle correlation across intervals, ρ = 0.78, P = 2.6 × 10^{−10} and drift rate, 1.5 (1.1 – 1.9)° per day (n = 90 population vector pairs from 6 mice). Cuminaldehyde: corrected angle correlation across intervals, ρ = 0.57, P = 4.2 × 10^{−5} and drift rate, 1.5 (1.1 – 2.2)° per day (n = 45 population vector pairs from 3 mice). Octanal: corrected angle correlation across intervals, ρ = 0.78, P = 2.6 × 10^{−10} and drift rate, 1.6 (1.3 – 1.9)° per day (n = 45 population vector pairs from 3 mice). Anisole: corrected angle correlation across intervals, ρ = 0.69, P = 1.7 × 10^{−7} and drift rate, 1.6 (1.2 – 2.1)° per day (n = 45 population vector pairs from 3 mice). f, Drift rate for each odorant stimulus used in 32day interval experiments. Red dotted line, mean drift rate across all experiments (from distribution in Fig. 2e). g, Odorants used in this study. Numbers indicate the number of experimental replicates in which each odorant molecule was used for each experiment type. h, Mean, normalized PID signal recorded simultaneous to the neural signals that were used to classify odorant stimuli using a linear SVM (superimposed, reproduced from Extended Data Fig. 5f).
Extended Data Fig. 7 Drift during the early phase of the odour response.
a, Mean local field potential over all 32 electrodes (filtered 0.1–20 Hz) from an example trial. We estimated the time of first sniff onset following stimulus onset by detecting the first peak of this oscillation on each trial. Only spikes that occurred within the 190 ms after and 10 ms before the detection of sniff onset were analysed (first sniff epoch). Arrowhead, estimated sniff onset. Grey bar, 4s odorant stimulus epoch. b, Red, classification accuracy (4way, SVM, linear kernel, L2 regularization) of singletrial zscored population vectors as a function of interval using only the 200ms window during the first sniff (as estimated by the first peak in the local field potential) in this mouse (n = 71 single units). Classification performance on day 0 computed using leaveoneout crossvalidation. For all other intervals the model was trained on all responses from the earlier day and tested on all responses from the later day, as in Fig. 2b. Black, performance with stimulus labels shuffled; mean ± s.d. c–e, As in Fig. 2c–e, but for only the first sniff epoch in this mouse (8day interval, n = 32 pairs of trialaveraged population vectors; 16day interval, n = 24 pairs; 24day interval, n = 16 pairs; 32day interval, n = 8 pairs; within day, all days n = 40 pairs). f, Top, odour–odour correlation matrices computed on each day during the first sniff epoch in this mouse; middle, bottom, matrices computed using complementary splits of the trials recorded on each day. g, Correlation matrix dissimilarity (scaled Frobenius norm; see Methods). h, i, As in Fig. 3b, c but for only the first sniff epoch in this mouse. h, Edge angle matrices; i, edge angle matrix dissimilarity (scaled Frobenius norm; see Methods). Black crosses, mean ± 95% CI; blue dotted line, linear regression; blue shading, 95% CI.
Extended Data Fig. 8 Drift in response geometry under diverse similarity metrics and temporal binnings.
a, Top, odour–odour correlation matrices computed within each odour test day using all trials (from same mouse as in Fig. 3b); middle, bottom, computed using splits of three trials per stimulus (middle) and the complementary four trials per stimulus (bottom) recorded on that day. Odour–odour correlation matrices were computed from trialaveraged population response vectors to eight odorant stimuli recorded on each of the five days. b, Correlation matrix dissimilarity (Frobenius norm; see Methods) from the same mouse as in a (mean ± 95% CI). Grey dashed line, top, matrix dissimilarity computed using shuffled stimulus identities; bottom, matrix dissimilarity computed within all individual days; grey shading, 95% CI. ρ = 0.43, P = 4.0 × 10^{−25}. Both within and acrossday matrix dissimilarity were calculated using odour–odour correlation matrices based on trialaveraged population vectors taken across all combinations of 3trial/4trial splits of the data for a given odorant on a given session. Withinday differences in odour response geometry measures (odour–odour correlation matrix dissimilarity) are significantly lower than differences measured across days (P < 1.2 × 10^{−34} for all measures and intervals from all three mice that were presented with a panel of eight stimuli). c, Correlation matrix dissimilarity averaged across all three mice, after scaling results from each subject between 0 (mean withinday matrix dissimilarity) and 1 (mean shuffle matrix dissimilarity). Blue dotted line, linear regression; blue shading, 95% CI. Withinday, 525 pairs; across days, 1,050 pairs. Correlation matrix dissimilarity increases significantly for: left, raw odour–odour correlations; second from left, odour–odour correlations computed using responses projected onto the data’s first six principal components (computed separately on each day); second from right, raw cosine distances; and right, cosine distances computed using responses projected onto the data’s first six principal components (computed separately on each day). d, Left, correlation coefficients of normalized matrix dissimilarity versus time interval (using odour–odour correlations measured in the full neural space; that is, Pearson’s correlation ρ such as that reported in c, left), computed at 250ms steps using a 1s sliding window along the odour response epoch. Grey box, 4s odorant stimulus epoch; vertical dotted line, onset of odour response at odour port (mean time across all stimuli at which the PID signal reached 5% of max). Right, correlation coefficients for normalized matrix dissimilarity versus time interval computed using 15 temporal binnings of the odour response epoch. e, As in d but using edge angles rather than correlations. This effect also holds when using responses projected onto the data’s first six principal components, as well as using cosine distance rather than Pearson’s correlation (data not shown).
Extended Data Fig. 9 Drift in response geometry in the odour coding subspace.
a, Left, percentage of total variance explained by each demixed principal component (dPC)^{28} from an example mouse; middle, fraction of total stimulus (red) and conditionindependent (blue) variance explained for this example mouse; right, total variance explained by stimulus dPCs (red, 78.4% (95% CI 76.0%, 79.8%)) and conditionindependent dPCs (blue, 21.6% (95% CI 20.2%, 23.7%)) for the n = 3 mice shown a panel of 8 odorant stimuli. Dark red, variance explained by the first ten dPCs that were primarily stimulus coding (45% (41.8%, 48.6%)). Error bars, 95% CI. b, Odour–odour correlation matrices from the example mouse computed after projecting responses onto the data’s first ten stimuluscoding dPCs, computed separately on each day (top row) and then (bottom two rows) using complementary splits of the trials recorded on each day. c, Correlation matrix dissimilarity (scaled Frobenius norm; see Methods) for all mice, using responses projected onto the data’s first ten stimuluscoding dPCs. d, Edge angle matrices from the example mouse computed after projecting responses onto the data’s first ten stimuluscoding dPCs. e, Acrossday edge angle matrix dissimilarity (scaled Frobenius norm; see Methods) for all mice, using responses projected onto the data’s first ten stimuluscoding dPCs. Black crosses, mean ± 95% CI; blue dotted line, linear regression; blue shading, 95% CI.
Extended Data Fig. 10 Effect of fear conditioning and familiarity on drift.
a, Conditioning experiment. Day −1: present one odorant paired with shock (CS+) and a second without shock (CS−) in a conditioning chamber. Days 0 and 16: administer conditioned (CS+ and CS−) and four additional neutral odorants to headfixed mouse while recording neural signals and measuring behavioural responses in a virtual burrow assay^{29}. Days 1–15: record neural signals in headfixed mouse without test odorant administration. b, Behaviour. Left, trialaveraged ingress amplitude (n = 5 mice) across time on days 0 and 16 on trial blocks 2–7 (shading, 95% CI). Grey bar, 4s odorant stimulus epoch. Right, mean ± 95% CI ingress amplitude during the final second of the odorant epoch on blocks 2–7. For days 0 and 16, CS+ vesus CS− and CS+ versus neutral, P < 1.4 × 10^{−3}, Wilcoxon ranksum. c, Neurophysiology. Left, scatter plots showing singleunit response magnitude for all three stimulus classes (mean spontaneous baselinesubtracted evoked responses computed during the odorant stimulus epoch) of odour–unit pairs on day 0 versus day 16 (CS+: n = 148 odour–unit pairs, CS−: n = 129 odour–unit pairs, neutral stimuli: n = 482 odour–unit pairs, data pooled across 5 mice). Black dashed line, unity; blue dotted line, linear regression; blue shading, 95% CI. Regression was performed across all odour–unit pairs that showed a significantly modulated response on at least one of the two days (Wilcoxon ranksum, α = 0.001). Middle, cumulative distributions; right, mean ± 95% CI (n = 5 mice) of corrected angles for all three classes of stimulus. For all comparisons, P > 0.05 (Wilcoxon ranksum). We note that classical conditioning reduces withinday variability (unpublished observations). Thus, the odour–unit pair response correlations reported here, which are not corrected for withinday variability, are higher than in other experiments (for example, Fig. 2a), but measures that correct for withinday variability, such as corrected angle or drift rate, are comparable. d, Familiarity experiment. Mice were presented with a panel of four neutral odorants daily over a 32day interval (days −16 to 16; familiar). Starting on day 0, a panel of unfamiliar odorants was presented at 8day intervals. e, Mean odourevoked response magnitude (spontaneous baselinesubtracted, computed during the odorant stimulus epoch) of odour–unit pairs across intervals of 8 days (left, familiar odorants: n = 741 odour–unit pairs, unfamiliar odorants: n = 1,137 odour–unit pairs) and 16 days (right, familiar odorants: n = 371 odour–unit pairs, unfamiliar odorants: n = 570 odour–unit pairs), data pooled across 5 mice. Black dashed line, unity; blue dotted line, linear regression; blue shading, 95% CI. Regression was performed across all odour–unit pairs that showed a significantly modulated response on at least one of the two days (Wilcoxon ranksum, α = 0.001). f, Acrossday classification accuracy (4way, SVM, linear kernel, L2 regularization, scaled between chance and maximum withinday performance to account for slight differences in withinday performance between the two conditions). Solid lines, mean; shading, 95% CI. g, h, Cumulative distribution (g) and mean ± 95% CI (h) of corrected angles from n = 5 mice. Unfamiliar, ρ = 0.48, P = 1.0 × 10^{−4}; familiar, ρ = 0.23, P = 0.08.
Supplementary information
Supplementary Information
This file contains a Supplementary Discussion and Supplementary References.
Rights and permissions
About this article
Cite this article
Schoonover, C.E., Ohashi, S.N., Axel, R. et al. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021). https://doi.org/10.1038/s41586021036287
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586021036287
This article is cited by

Dynamic and selective engrams emerge with memory consolidation
Nature Neuroscience (2024)

Dimensionality reduction beyond neural subspaces with slice tensor component analysis
Nature Neuroscience (2024)

A persistent prefrontal reference frame across time and task rules
Nature Communications (2024)

Volatile working memory representations crystallize with practice
Nature (2024)

Unsupervised restoration of a complex learned behavior after largescale neuronal perturbation
Nature Neuroscience (2024)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.