Abstract
Rigid molecular sieving materials work well for small molecules with the complete exclusion of large ones1,2,3, and molecules with matching physiochemical properties may be separated using dynamic molecular sieving materials4,5,6. Metal–organic frameworks (MOFs)7,8,9 are known for their precise control of structures and functions on a molecular level10,11,12,13,14,15. However, the rational design of local flexibility in the MOF framework for dynamic molecular sieving remains difficult and challenging. Here we report a MOF material (JNU-3a) featuring one-dimension channels with embedded molecular pockets opening to propylene (C3H6) and propane (C3H8) at substantially different pressures. The dynamic nature of the pockets is revealed by single-crystal-to-single-crystal transformation upon exposure of JNU-3a to an atmosphere of C3H6 or C3H8. Breakthrough experiments demonstrate that JNU-3a can realize high-purity C3H6 (≥99.5%) in a single adsorption–desorption cycle from an equimolar C3H6/C3H8 mixture over a broad range of flow rates, with a maximum C3H6 productivity of 53.5 litres per kilogram. The underlying separation mechanism—orthogonal-array dynamic molecular sieving—enables both large separation capacity and fast adsorption–desorption kinetics. This work presents a next-generation sieving material design that has potential for applications in adsorptive separation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation
Nature Communications Open Access 02 March 2023
-
Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF
Nature Communications Open Access 25 January 2023
-
Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework
Nature Communications Open Access 24 December 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The data that support the plots within this paper and other finding of this study are available from the corresponding authors upon reasonable request. The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2018163–2018167. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/data_request/cif.
References
Yang, R. T. Gas Separation by Adsorption Processes (Imperial College Press, 1997).
Lin, R. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).
Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).
Zhou, D. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 18, 994–998 (2019).
Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat. Chem. 2, 633–637 (2010).
Zhang, X.-W. et al. Tuning the gating energy barrier of metal–organic framework for molecular sieving. Chem. 7, 1006–1019 (2021).
Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal organic frameworks. Chem. Rev. 112, 673–674 (2012).
Zhou, H. C. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
Chen, B., Xiang, S. C. & Qian, G. D. Metal–organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010).
Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal–Organic Frameworks and Covalent Organic Frameworks (Wiley-VCH, 2019).
Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).
Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).
Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).
Wang, H. et al. Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv. Mater. 30, 1805088 (2018).
IHS. Natural gas liquids challenging oil as petrochemical feedstock in North America, increasing global demand for on-purpose production of propylene, IHS says. Business Wire https://www.businesswire.com/news/home/20140827005068/en/Natural-Gas-Liquids-Challenging-Oil-as-Petrochemical-Feedstock-in-North-America-Increasing-Global-Demand-for-On-purpose-Production-of-Propylene-IHS-Says (2014).
Eldridge, R. B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).
Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).
Rege, S. U. & Yang, R. T. Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chem. Eng. Sci. 57, 1139–1149 (2002).
Papastathopoulou, H. S. & Luyben, W. L. Control of a binary sidestream distillation column. Ind. Eng. Chem. Res. 30, 705–713 (1991).
Martins, V. F. D. et al. Development of gas phase SMB technology for light olefin/paraffin separations. AIChE J. 62, 2490–2500 (2016).
Narin, G. et al. Light olefins/paraffins separation with 13X zeolite binderless beads. Separ. Purif. Tech. 133, 452–475 (2014).
Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 368, 1002–1006 (2020).
Mohanty, S. & McCormick, A. V. Prospects for principles of size and shape selective separations using zeolites. Chem. Eng. J. 74, 1–14 (1999).
Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).
Li, B. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29, 1704210 (2017).
Hu, T. et al. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat. Commun. 6, 7328 (2015).
Ma, S., Sun, D., Wang, X.-S. & Zhou, H.-C. A mesh-adjustable molecular sieve for general use in gas separation. Angew. Chem. Int. Ed. 46, 2458–2462 (2007).
Katsoulidis, A. P. et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 565, 213–217 (2019).
Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).
Krokidas, P. et al. Molecular simulation studies of the diffusion of methane, ethane, propane, and propylene in ZIF-8. J. Phys. Chem. C 119, 27028–27037 (2015).
Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).
Lin, R. B. et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 139, 8022–8028 (2017).
Li, L. et al. Flexible robust metal–organic framework for efficient removal of propyne from propylene. J. Am. Chem. Soc. 139, 7733–7736 (2017).
Wang, X. et al. Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chem. Eng. J. 346, 489–496 (2018).
Grande, C. A. & Rodrigues, A. E. Adsorption kinetics of propane and propylene in zeolite 4A. Chem. Eng. Res. Des. 82, 1604–1612 (2004).
Khalighi, M., Karimi, I. A. & Farooq, S. Comparing SiCHA and 4A zeolite for propylene/propane separation using a surrogate-based simulation/optimization approach. Ind. Eng. Chem. Res. 53, 16973–16983 (2014).
Liang, B. et al. An ultramicroporous metal–organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 142, 17795–17801 (2020).
Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965).
Lee, C. Y. et al. Kinetic separation of propene and propane in metal organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J. Am. Chem. Soc. 133, 5228–5231 (2011).
Meyers, R. A. Handbook of Petrochemicals Production Processes (McGraw-Hill, 2005).
Acknowledgements
We thank W. Chen and A. Zheng from the Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences for their advice on computational studies. This work was financially supported by the National Natural Science Foundation of China (nos 21731002 and 21975104), the Guangdong Major Project of Basic and Applied Research (no. 2019B030302009), and Guangdong Basic and Applied Basic Research Foundation (no. 2020A1515011005).
Author information
Authors and Affiliations
Contributions
W.L. and D.L. conceived and designed the research. H.Z., T.W. and X.-J.X. synthesized the compounds. H.Z. collected and analysed the gas adsorption and separation data. H.Z. collected the X-ray diffraction data. R.-J.W. and Y.Z. analysed the X-ray diffraction data. M.X. performed the theoretical calculations. H.Z., W.L. and D.L. prepared the first version of the manuscript, and all authors participated in and contributed to the final version.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Coordination environment.
Local coordination environment of Co2+. Co, light blue; C, dark grey; N, blue; O, red; H, white.
Extended Data Fig. 2 Pore structure of JNU-3a.
Connolly surface representation of JNU-3a viewed along the a axis (yellow/grey curved surface).
Extended Data Fig. 3 DSC profiles.
a–d, Differential scanning calorimetry of 50/50 mixed-component of C3H6/He (a), C3H8/He (b), C3H6/C3H8 (c), and helium (d) on JNU-3a at 303 K. The flow rate is 5.0 ml min−1.
Extended Data Fig. 4 IAST selectivity.
Calculated IAST adsorption selectivity of C3H6 over C3H8 on JNU-3a for an equimolar mixture of C3H6/C3H8 at 303 K. P, pressure.
Extended Data Fig. 5 Kinetic profiles.
a, C3H6 kinetic adsorption on JNU-3a, Y-abtc and KAUST-7 at 303 K. b, C3H6 kinetic desorption on JNU-3a, Y-abtc and KAUST-7 at 303 K.
Extended Data Fig. 6 Diffusion rate constants.
a–c, The calculated C3H6 diffusion rate constants on JNU-3a (a), KAUST-7 (b), and Y-abtc (c), fitted automatically with BEL-Master software according to the Crank theory. C, concentration; C0, initial concentration; Ce, concentration at equilibrium.
Extended Data Fig. 7 DFT calculations.
a, Geometry optimization by DFT for (i) JNU-3a@2C3H6 with fully relaxed geometry and cell parameters; and (ii) JNU-3a@2C3H6′ (the prime symbol is used here to differentiate it from scenario (i)) with fixed geometry and cell parameters. b, The rotation of the dihedral angle of the pyridine plane and triazole plane. Light blue, red, blue, white and grey represent Co, O, N, H and C atoms, respectively. H atoms are omitted in a for clarity.
Extended Data Fig. 8 C3H6 productivity and purity.
Comparison of C3H6 productivity and purity estimated from the experimental breakthrough data of an equimolar C3H6/C3H8 mixture on JNU-3a, KAUST-7 and Y-abtc at different flow rates.
Supplementary information
Supplementary Information
This file contains supplementary text, supplementary tables 1 – 5, supplementary figures 1 – 54 and supplementary references.
Rights and permissions
About this article
Cite this article
Zeng, H., Xie, M., Wang, T. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021). https://doi.org/10.1038/s41586-021-03627-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-03627-8
This article is cited by
-
Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF
Nature Communications (2023)
-
Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation
Nature Communications (2023)
-
Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas
Nano Research (2023)
-
Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications
Science China Chemistry (2023)
-
Controlling dynamics in extended molecular frameworks
Nature Reviews Chemistry (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.