Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orthogonal-array dynamic molecular sieving of propylene/propane mixtures


Rigid molecular sieving materials work well for small molecules with the complete exclusion of large ones1,2,3, and molecules with matching physiochemical properties may be separated using dynamic molecular sieving materials4,5,6. Metal–organic frameworks (MOFs)7,8,9 are known for their precise control of structures and functions on a molecular level10,11,12,13,14,15. However, the rational design of local flexibility in the MOF framework for dynamic molecular sieving remains difficult and challenging. Here we report a MOF material (JNU-3a) featuring one-dimension channels with embedded molecular pockets opening to propylene (C3H6) and propane (C3H8) at substantially different pressures. The dynamic nature of the pockets is revealed by single-crystal-to-single-crystal transformation upon exposure of JNU-3a to an atmosphere of C3H6 or C3H8. Breakthrough experiments demonstrate that JNU-3a can realize high-purity C3H6 (≥99.5%) in a single adsorption–desorption cycle from an equimolar C3H6/C3H8 mixture over a broad range of flow rates, with a maximum C3H6 productivity of 53.5 litres per kilogram. The underlying separation mechanism—orthogonal-array dynamic molecular sieving—enables both large separation capacity and fast adsorption–desorption kinetics. This work presents a next-generation sieving material design that has potential for applications in adsorptive separation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Molecular sieving.
Fig. 2: Crystal structure of JNU-3.
Fig. 3: Gas sorption properties and DSC profiles.
Fig. 4: Binding sites and dynamic gate-opening.
Fig. 5: Breakthrough experiments.
Fig. 6: Recyclability and breakthrough experiment under humid conditions.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding authors upon reasonable request. The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2018163–2018167. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via


  1. 1.

    Yang, R. T. Gas Separation by Adsorption Processes (Imperial College Press, 1997).

  2. 2.

    Lin, R. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Zhou, D. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 18, 994–998 (2019).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat. Chem. 2, 633–637 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Zhang, X.-W. et al. Tuning the gating energy barrier of metal–organic framework for molecular sieving. Chem. 7, 1006–1019 (2021).

    CAS  Article  Google Scholar 

  7. 7.

    Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Zhou, H. C. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  10. 10.

    Chen, B., Xiang, S. C. & Qian, G. D. Metal–organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal–Organic Frameworks and Covalent Organic Frameworks (Wiley-VCH, 2019).

  12. 12.

    Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Wang, H. et al. Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv. Mater. 30, 1805088 (2018).

    Article  Google Scholar 

  16. 16.

    IHS. Natural gas liquids challenging oil as petrochemical feedstock in North America, increasing global demand for on-purpose production of propylene, IHS says. Business Wire (2014).

  17. 17.

    Eldridge, R. B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).

    Article  Google Scholar 

  18. 18.

    Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Rege, S. U. & Yang, R. T. Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chem. Eng. Sci. 57, 1139–1149 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    Papastathopoulou, H. S. & Luyben, W. L. Control of a binary sidestream distillation column. Ind. Eng. Chem. Res. 30, 705–713 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    Martins, V. F. D. et al. Development of gas phase SMB technology for light olefin/paraffin separations. AIChE J. 62, 2490–2500 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Narin, G. et al. Light olefins/paraffins separation with 13X zeolite binderless beads. Separ. Purif. Tech. 133, 452–475 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 368, 1002–1006 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Mohanty, S. & McCormick, A. V. Prospects for principles of size and shape selective separations using zeolites. Chem. Eng. J. 74, 1–14 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Li, B. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29, 1704210 (2017).

    Article  Google Scholar 

  28. 28.

    Hu, T. et al. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat. Commun. 6, 7328 (2015).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Ma, S., Sun, D., Wang, X.-S. & Zhou, H.-C. A mesh-adjustable molecular sieve for general use in gas separation. Angew. Chem. Int. Ed. 46, 2458–2462 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    Katsoulidis, A. P. et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 565, 213–217 (2019).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Krokidas, P. et al. Molecular simulation studies of the diffusion of methane, ethane, propane, and propylene in ZIF-8. J. Phys. Chem. C 119, 27028–27037 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  34. 34.

    Lin, R. B. et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 139, 8022–8028 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Li, L. et al. Flexible robust metal–organic framework for efficient removal of propyne from propylene. J. Am. Chem. Soc. 139, 7733–7736 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Wang, X. et al. Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chem. Eng. J. 346, 489–496 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Grande, C. A. & Rodrigues, A. E. Adsorption kinetics of propane and propylene in zeolite 4A. Chem. Eng. Res. Des. 82, 1604–1612 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Khalighi, M., Karimi, I. A. & Farooq, S. Comparing SiCHA and 4A zeolite for propylene/propane separation using a surrogate-based simulation/optimization approach. Ind. Eng. Chem. Res. 53, 16973–16983 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Liang, B. et al. An ultramicroporous metal–organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 142, 17795–17801 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965).

    CAS  Article  Google Scholar 

  41. 41.

    Lee, C. Y. et al. Kinetic separation of propene and propane in metal organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J. Am. Chem. Soc. 133, 5228–5231 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Meyers, R. A. Handbook of Petrochemicals Production Processes (McGraw-Hill, 2005).

Download references


We thank W. Chen and A. Zheng from the Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences for their advice on computational studies. This work was financially supported by the National Natural Science Foundation of China (nos 21731002 and 21975104), the Guangdong Major Project of Basic and Applied Research (no. 2019B030302009), and Guangdong Basic and Applied Basic Research Foundation (no. 2020A1515011005).

Author information




W.L. and D.L. conceived and designed the research. H.Z., T.W. and X.-J.X. synthesized the compounds. H.Z. collected and analysed the gas adsorption and separation data. H.Z. collected the X-ray diffraction data. R.-J.W. and Y.Z. analysed the X-ray diffraction data. M.X. performed the theoretical calculations. H.Z., W.L. and D.L. prepared the first version of the manuscript, and all authors participated in and contributed to the final version.

Corresponding authors

Correspondence to Weigang Lu or Dan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Coordination environment.

Local coordination environment of Co2+. Co, light blue; C, dark grey; N, blue; O, red; H, white.

Extended Data Fig. 2 Pore structure of JNU-3a.

Connolly surface representation of JNU-3a viewed along the a axis (yellow/grey curved surface).

Extended Data Fig. 3 DSC profiles.

ad, Differential scanning calorimetry of 50/50 mixed-component of C3H6/He (a), C3H8/He (b), C3H6/C3H8 (c), and helium (d) on JNU-3a at 303 K. The flow rate is 5.0 ml min−1.

Extended Data Fig. 4 IAST selectivity.

Calculated IAST adsorption selectivity of C3H6 over C3H8 on JNU-3a for an equimolar mixture of C3H6/C3H8 at 303 K. P, pressure.

Extended Data Fig. 5 Kinetic profiles.

a, C3H6 kinetic adsorption on JNU-3a, Y-abtc and KAUST-7 at 303 K. b, C3H6 kinetic desorption on JNU-3a, Y-abtc and KAUST-7 at 303 K.

Extended Data Fig. 6 Diffusion rate constants.

ac, The calculated C3H6 diffusion rate constants on JNU-3a (a), KAUST-7 (b), and Y-abtc (c), fitted automatically with BEL-Master software according to the Crank theory. C, concentration; C0, initial concentration; Ce, concentration at equilibrium.

Extended Data Fig. 7 DFT calculations.

a, Geometry optimization by DFT for (i) JNU-3a@2C3H6 with fully relaxed geometry and cell parameters; and (ii) JNU-3a@2C3H6′ (the prime symbol is used here to differentiate it from scenario (i)) with fixed geometry and cell parameters. b, The rotation of the dihedral angle of the pyridine plane and triazole plane. Light blue, red, blue, white and grey represent Co, O, N, H and C atoms, respectively. H atoms are omitted in a for clarity.

Extended Data Fig. 8 C3H6 productivity and purity.

Comparison of C3H6 productivity and purity estimated from the experimental breakthrough data of an equimolar C3H6/C3H8 mixture on JNU-3a, KAUST-7 and Y-abtc at different flow rates.

Supplementary information

Supplementary Information

This file contains supplementary text, supplementary tables 1 – 5, supplementary figures 1 – 54 and supplementary references.

Supplementary Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Xie, M., Wang, T. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing