Abstract
Mechanical mechanisms have been used to process information for millennia, with famous examples ranging from the Antikythera mechanism of the Ancient Greeks to the analytical machines of Charles Babbage. More recently, electronic forms of computation and information processing have overtaken these mechanical forms, owing to better potential for miniaturization and integration. However, several unconventional computing approaches have recently been introduced, which blend ideas of information processing, materials science and robotics. This has raised the possibility of new mechanical computing systems that augment traditional electronic computing by interacting with and adapting to their environment. Here we discuss the use of mechanical mechanisms, and associated nonlinearities, as a means of processing information, with a view towards a framework in which adaptable materials and structures act as a distributed information processing network, even enabling information processing to be viewed as a material property, alongside traditional material properties such as strength and stiffness. We focus on approaches to abstract digital logic in mechanical systems, discuss how these systems differ from traditional electronic computing, and highlight the challenges and opportunities that they present.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Strain topological metamaterials and revealing hidden topology in higher-order coordinates
Nature Communications Open Access 19 October 2023
-
Mechanical metamaterials and beyond
Nature Communications Open Access 26 September 2023
-
In-memory mechanical computing
Nature Communications Open Access 25 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Freeth, T. et al. Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444, 587–591 (2006).
Bromley, A. G. Charles Babbage’s analytical engine, 1838. Ann. Hist. Comput. 20, 29–45 (1998).
Bush, V. The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931).
Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).
Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).
McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).
Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).
Müller, V. C. & Hoffmann, M. What is morphological computation? On how the body contributes to cognition and control. Artif. Life 23, 1–24 (2017).
Laschi, C. & Mazzolai, B. Lessons from animals and plants: the symbiosis of morphological computation and soft robotics. IEEE Robot. Autom. Mag. 23, 107–114 (2016).
Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).
Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).
Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).
Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).
Katsikis, G., Cybulski, J. S. & Prakash, M. Synchronous universal droplet logic and control. Nat. Phys. 11, 588–596 (2015).
Weaver, J. A., Melin, J., Stark, D., Quake, S. R. & Horowitz, M. A. Static control logic for microfluidic devices using pressure-gain valves. Nat. Phys. 6, 218–223 (2010).
Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. & Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).
Woodhouse, F. G. & Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).
Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).
Volkov, A. G., Adesina, T., Markin, V. S. & Jovanov, E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol. 146, 323–324 (2008).
Yang, R., Lenaghan, S. C., Zhang, M. & Xia, L. A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal. Behav. 5, 968–978 (2010).
Jiang, Y., Korpas, L. M. & Raney, J. R. Bifurcation-based embodied logic and autonomous actuation. Nat. Commun. 10, 128 (2019). Demonstrates environmentally responsive mechanical logic by using bistable beam mechanisms and stimuli-responsive materials.
Horsman, C., Stepney, S., Wagner, R. C. & Kendon, V. When does a physical system compute? Proc. Royal Soc. Lond. A 470, 20140182 (2014). Provides a framework for unconventional computing, distinguishing abstract computation from physical embodiment.
Feynman, R. P. Feynman Lectures on Computation (CRC Press, 2018).
MacLennan, B. J. Natural computation and non-Turing models of computation. Theor. Comput. Sci. 317, 115–145 (2004).
Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).
Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).
Howell, L. L. Compliant Mechanisms (John Wiley & Sons, 2001).
Qiu, J., Lang, J. H. & Slocum, A. H. A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004).
Oh, Y. S. & Kota, S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms. J. Mech. Des. 131, 021002 (2009).
Cazottes, P., Fernandes, A., Pouget, J. & Hafez, M. Bistable buckled beam: modeling of actuating force and experimental validations. J. Mech. Des. 131, 101001 (2009).
Camescasse, B., Fernandes, A. & Pouget, J. Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50, 2881–2893 (2013).
Wu, C. C., Lin, M. J. & Chen, R. The derivation of a bistable criterion for double V-beam mechanisms. J. Micromech. Microeng. 23, 115005 (2013).
Ion, A., Wall, L., Kovacs, R. & Baudisch, P. Digital mechanical metamaterials. In Proc. 2017 CHI Conference on Human Factors in Computing Systems 977–988 (ACM, 2017). Demonstrates the use of 3D-printed modular bistable elements to perform digital logic, including ‘combination lock’ mechanisms.
Song, Y. et al. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10, 882 (2019). Realizes a full set of digital mechanical logic gates via 3D printing of bistable flexural beams.
Hälg, B. On a micro-electro-mechanical nonvolatile memory cell. IEEE Trans. Electron Dev. 37, 2230–2236 (1990). Provides an early example of the use of constrained beams to represent binary information.
Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016). Demonstrates mechanical diodes and logic gates based on the propagation of stable, nonlinear transition waves in architected soft systems of coupled bistable beams.
Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017). Demonstrates volumetric origami cells with tuneable stability and stiffness that store bit information in a bistable potential-energy landscape.
Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. & Howell, L. L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
Saito, K., Tsukahara, A. & Okabe, Y. New deployable structures based on an elastic origami model. J. Mech. Des. 137, 021402 (2015).
Jianguo, C., Xiaowei, D., Ya, Z., Jian, F. & Yongming, T. Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).
Waitukaitis, S., Menaut, R., Chen, B. G. & van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).
Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).
Ishida, S., Uchida, H., Shimosaka, H. & Hagiwara, I. Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. J. Vib. Acoust. 139, 031015 (2017).
Fang, H., Li, S., Ji, H. & Wang, K. W. Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95, 052211 (2017).
Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 46046 (2017).
Faber, J. A., Arrieta, A. F. & Studart, A. R. Bioinspired spring origami. Science 359, 1386–1391 (2018).
Filipov, E. T. & Redoutey, M. Mechanical characteristics of the bistable origami hypar. Extreme Mech. Lett. 25, 16–26 (2018).
Sengupta, S. & Li, S. Harnessing the anisotropic multistability of stackedorigami mechanical metamaterials for effective modulus programming. J. Intell. Mater. Syst. Struct. 29, 2933–2945 (2018).
Liu, K., Tachi, T. & Paulino, G. H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat. Commun. 10, 4238 (2019).
Bhovad, P., Kaufmann, J. & Li, S. Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech. Lett. 32, 100552 (2019).
Yang, N., Zhang, M., Zhu, R. & Niu, X. D. Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability. Sci. Rep. 9, 18812 (2019).
Wang, L.-C. et al. Active reconfigurable tristable square-twist origami. Adv. Funct. Mater. 30, 1909087 (2020).
Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. USA 115, 6916–6921 (2018). Presents an environmentally responsive origami platform using the waterbomb fold pattern as a mechanical storage device that writes, erases and rewrites itself in response to a time-varying environmental signal.
Glusker, M., Hogan, D. M. & Vass, P. The ternary calculating machine of Thomas Fowler. IEEE Ann. Hist. Comput. 27, 4–22 (2005).
Hayes, B. Computing science: third base. Am. Sci. 89, 490–494 (2001).
Yasuda, H., Korpas, L. M. & Raney, J. R. Transition waves and formation of domain walls in multistable mechanical metamaterials. Phys. Rev. Appl. 13, 054067 (2020).
Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol. 3, 275–279 (2008). Demonstrates a volatile mechanical memory device in which binary information is abstracted in the phase offset of the beam oscillation.
Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A. & Mohanty, P. A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587 (2004).
Noh, H., Shim, S. B., Jung, M., Khim, Z. G. & Kim, J. A mechanical memory with a dc modulation of nonlinear resonance. Appl. Phys. Lett. 97, 033116 (2010).
Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011).
Ahmed, S. et al. A compact adder and reprogrammable logic gate using micro-electromechanical resonators with partial electrodes. IEEE Trans. Circuits Syst. II 66, 2057–2061 (2019).
Serra-Garcia, M. Turing-complete mechanical processor via automated nonlinear system design. Phys. Rev. E 100, 042202 (2019).
Venstra, W. J., Westra, H. J. R. & Van Der Zant, H. S. J. Mechanical stiffening, bistability, and bit operations in a microcantilever. Appl. Phys. Lett. 97, 193107 (2010). Utilizes nonlinear dynamics in microcantilevers to demonstrate bit operations in volatile dynamic systems through modulation of the driving frequency.
Zhang, S., Yin, L. & Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).
Nesterenko, V. F. Dynamics of Heterogeneous Materials (Springer-Verlag, 2001).
Liang, B., Guo, X. S., Tu, J., Zhang, D. & Cheng, J. C. An acoustic rectifier. Nat. Mater. 9, 989–992 (2010).
Li, N. et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).
Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).
Kim, E. & Yang, J. Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps. J. Mech. Phys. Solids 71, 33–45 (2014).
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
Zheng, B. & Xu, J. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps. J. Phys. D 50, 465601 (2017).
Bilal, O. R., Foehr, A. & Daraio, C. Bistable metamaterial for switching and cascading elastic vibrations. Proc. Natl Acad. Sci. USA 114, 4603–4606 (2017). Uses geometric nonlinearities to switch and amplify elastic vibrations via magnetic coupling, allowing logic and simple calculations.
Li, F., Anzel, P., Yang, J., Kevrekidis, P. G. & Daraio, C. Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014). Provides an example of a mechanical metamaterial that allows logic operations via nonlinear dynamics in a granular chain.
Li, X. F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011).
Babaee, S., Viard, N., Wang, P., Fang, N. X. & Bertoldi, K. Harnessing deformation to switch on and off the propagation of sound. Adv. Mater. 28, 1631–1635 (2016).
Merkle, R. C. Two types of mechanical reversible logic. Nanotechnology 4, 114–131 (1993).
Howard, M. LEGO Logic Gates and Mechanical Computing https://www.randomwraith.com/logic.html (accessed 19 August 2020).
Saharia, K. Lego Logic http://web.archive.org/web/20140206173429/http://keshavsaharia.com/2011/05/29/lego-logic (accessed 19 August 2020).
Merkle, R. C. et al. Mechanical computing systems using only links and rotary joints. J. Mech. Robot. 10, 061006 (2018).
Berwind, M. F., Kamas, A. & Eberl, C. A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv. Eng. Mater. 20, 1800771 (2018).
Zhang, T., Cheng, Y., Guo, J. Z., Xu, J. Y. & Liu, X. J. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams. Appl. Phys. Lett. 106, 113503 (2015).
Wu, Q., Cui, C., Bertrand, T., Shattuck, M. D. & O’Hern, C. S. Active acoustic switches using two-dimensional granular crystals. Phys. Rev. E 99, 062901 (2019).
Faber, J. A., Udani, J. P., Riley, K. S., Studart, A. R. & Arrieta, A. F. Dome-patterned metamaterial sheets. Adv. Sci. 7, 2001955 (2020).
Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).
Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529–532 (2016).
Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).
Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).
Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).
Paulose, J., Meeussen, A. S. & Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl Acad. Sci. USA 112, 7639–7644 (2015).
Chaunsali, R., Chen, C. W. & Yang, J. Experimental demonstration of topological waveguiding in elastic plates with local resonators. New J. Phys. 20, 113036 (2018).
Liu, B. et al. Topological kinematics of origami metamaterials. Nat. Phys. 14, 811–815 (2018).
Shi, X., Chaunsali, R., Li, F. & Yang, J. Elastic Weyl points and surface arc states in three-dimensional structures. Phys. Rev. Appl. 12, 024058 (2019).
Bilal, O. R., Süsstrunk, R., Daraio, C. & Huber, S. D. Intrinsically polar elastic metamaterials. Adv. Mater. 29, 1700540 (2017).
Sigmund, O. On the design of compliant mechanisms using topology optimization. Mechan. Struct. Mach. 25, 493–524 (1997).
Howell, L. L., Midha, A. & Norton, T. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms. J. Mech. Des. 118, 126–131 (1996).
Rocks, J. W. et al. Designing allostery-inspired response in mechanical networks. Proc. Natl Acad. Sci. USA 114, 2520–2525 (2017).
Bielefeldt, B. R., Akleman, E., Reich, G. W., Beran, P. S. & Hartl, D. J. L-system-generated mechanism topology optimization using graph-based interpretation. J. Mech. Robot. 11, 020905 (2019).
Wilson, K. E., Henke, E.-F. M., Slipher, G. A. & Anderson, I. A. Rubbery logic gates. Extreme Mech. Lett. 9, 188–194 (2016).
Chau, N., Slipher, G. A., O’Brien, B. M., Mrozek, R. A. & Anderson, I. A. A solid-state dielectric elastomer switch for soft logic. Appl. Phys. Lett. 108, 103506 (2016).
Wissman, J., Dickey, M. D. & Majidi, C. Field-controlled electrical switch with liquid metal. Adv. Sci. 4, 1700169 (2017).
Le Ferrand, H., Studart, A. R. & Arrieta, A. F. Filtered mechanosensing using snapping composites with embedded mechano-electrical transduction. ACS Nano 13, 4752–4760 (2019).
Abdullah, A. M., Braun, P. V. & Hsia, K. J. Programmable shape transformation of elastic spherical domes. Soft Matter 12, 6184–6195 (2016).
Chen, T., Bilal, O. R., Shea, K. & Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl Acad. Sci. USA 115, 5698–5702 (2018).
Ambulo, C. P. et al. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017).
Wani, O. M., Zeng, H. & Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017).
Deirram, N., Zhang, C., Kermaniyan, S. S., Johnston, A. P. R. & Such, G. K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 40, e1800917 (2019).
Loukaides, E. G., Smoukov, S. K. & Seffen, K. A. Magnetic actuation and transition shapes of a bistable spherical cap. Int. J. Smart Nano Mater. 5, 270–282 (2014).
Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).
Jackson, J. A. et al. Field responsive mechanical metamaterials. Sci. Adv. 4, eaau6419 (2018).
Jin, Y. et al. Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019).
Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).
Zhao, H., O’Brien, K., Li, S. & Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1, eaai7529 (2016).
Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, e1706383 (2018).
Lee, T. H., Bhunia, S. & Mehregany, M. Electromechanical computing at 500 degrees C with silicon carbide. Science 329, 1316–1318 (2010). Demonstrates the capability of electromechanical switches at high temperature.
Blakey, E. in Advances in Unconventional Computing. Emergence, Complexity and Computation (ed. Adamatzky, A.) 165–182 (Springer, 2017).
Roukes, M. L. Mechanical computation, redux? In IEDM Technical Digest. IEEE International Electron Devices Meeting 2004 539–542 (IEEE, 2004).
Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).
Pott, B. V. et al. Mechanical computing redux: relays for integrated circuit applications. Proc. IEEE 98, 2076–2094 (2010).
Kam, H., Liu, T. J. K., Stojanović, V., Marković, D. & Alon, E. Design, optimization, and scaling of MEM relays for ultra-low-power digital logic. IEEE Trans. Electron Dev. 58, 236–250 (2011).
Wang, J. & Perez, L. The effectiveness of data augmentation in image classification using deep learning. Preprint at https://arxiv.org/abs/1712.04621 (2017).
Houthooft, R. et al. VIME: variational information maximizing exploration. Adv. Neural Inf. Process. Syst. 29, 1109–1117 (2016).
Null, L. & Lobur, J. The Essentials of Computer Organization and Architecture (Jones & Bartlett Publishers, 2015).
Sauder, J. et al. Automation Rover for Extreme Environments: NASA Innovative Advanced Concepts (NIAC) Phase I Final Report https://www.nasa.gov/sites/default/files/atoms/files/niac_2016_phasei_saunder_aree_tagged.pdf (NASA, 2017).
Acknowledgements
H.Y. and J.R.R. acknowledge support from Army Research Office award number W911NF-1710147, Air Force Office of Scientific Research award number FA9550-19-1-0285 and DARPA Young Faculty Award W911NF2010278. P.R.B., A.G. and R.A.V. acknowledge support from the Materials and Manufacturing Directorate and the Air Force Office of Scientific Research of the Air Force Research Laboratory. T.D.M. acknowledges support from NSF 1837515 and ARO MURI award W911NF-19-1-0233. S.S. acknowledges support from the SpInspired project, EPSRC grant number EP/R032823/1.
Author information
Authors and Affiliations
Contributions
All authors contributed to the conceptual development and writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains the Supplementary Discussion, which briefly outlines how non-binary abstractions can be realized in mechanical systems, and how information storage scales with the base of the abstraction (binary, ternary, etc.) and the number of units. It includes Supplementary Figure 1 and Supplementary References.
Rights and permissions
About this article
Cite this article
Yasuda, H., Buskohl, P.R., Gillman, A. et al. Mechanical computing. Nature 598, 39–48 (2021). https://doi.org/10.1038/s41586-021-03623-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-03623-y
This article is cited by
-
Strain topological metamaterials and revealing hidden topology in higher-order coordinates
Nature Communications (2023)
-
An interconnect-free micro-electromechanical 7-bit arithmetic device for multi-operand programmable computing
Microsystems & Nanoengineering (2023)
-
Bounded Wang tilings with integer programming and graph-based heuristics
Scientific Reports (2023)
-
Mechanical metamaterials and beyond
Nature Communications (2023)
-
Energy efficient integrated MEMS neural network for simultaneous sensing and computing
Communications Engineering (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.