Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Incoherent transport across the strange-metal regime of overdoped cuprates


Strange metals possess highly unconventional electrical properties, such as a linear-in-temperature resistivity1,2,3,4,5,6, an inverse Hall angle that varies as temperature squared7,8,9 and a linear-in-field magnetoresistance10,11,12,13. Identifying the origin of these collective anomalies has proved fundamentally challenging, even in materials such as the hole-doped cuprates that possess a simple bandstructure. The prevailing consensus is that strange metallicity in the cuprates is tied to a quantum critical point at a doping p* inside the superconducting dome14,15. Here we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond p*. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high values of the ratio of the field and the temperature, indicating that the strange-metal regime extends well beyond p*. Moreover, the magnitude of the magnetoresistance is found to be much larger than predicted by conventional theory and is insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange-metal region hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant ‘Planckian’ dissipators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The strange-metal regime of overdoped cuprates.
Fig. 2: Quadrature scaling of the in-plane MR in heavily overdoped cuprates.
Fig. 3: Evidence for incoherent transport in heavily overdoped cuprates.

Data availability

The data that support the plots within this paper and other findings of this study are available from the Bristol data repository, data.bris, at


  1. 1.

    Martin, S. et al. Normal-state transport properties of Bi2Sr2CuO6+δ crystals. Phys. Rev. B 41, 846–849 (1990).

    ADS  CAS  Google Scholar 

  2. 2.

    Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    ADS  CAS  Google Scholar 

  3. 3.

    Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2−xSrxCuO4. Science 323, 603–607 (2009).

    ADS  CAS  Google Scholar 

  4. 4.

    Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142–147 (2019).

    CAS  Google Scholar 

  6. 6.

    Licciardello, S. et al. Electrical resistivity across a nematic quantum critical point. Nature 567, 213–217 (2019).

    ADS  CAS  Google Scholar 

  7. 7.

    Chien, T., Wang, Z. & Ong, N. Effect of Zn impurities on the normal-state Hall angle in single crystal YBa2Cu3−xZnxO7−δ. Phys. Rev. Lett. 67, 2088–2091 (1991).

    ADS  CAS  Google Scholar 

  8. 8.

    Nakajima, Y. et al. Non-Fermi-liquid behavior in the magnetotransport of CeMIn5 (M: Co and Rh): striking similarity between quasi-two-dimensional heavy fermion and high-Tc cuprates. J. Phys. Soc. Jpn. 76, 024703 (2007).

    ADS  Google Scholar 

  9. 9.

    Liu, R. H. et al. Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1−xFx superconductors. Phys. Rev. Lett. 101, 087001 (2008).

    ADS  CAS  Google Scholar 

  10. 10.

    Hayes, I. M. et al. Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2. Nat. Phys. 12, 916–919 (2016).

    Google Scholar 

  11. 11.

    Sarkar, T., Mandal, P. R., Poniatowski, N. R., Chan, M. K. & Greene, R. L. Correlation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate. Sci. Adv. 5, eaav6753 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Giraldo-Gallo, P. et al. Scale-invariant magnetoresistance in a cuprate superconductor. Science 361, 479–481 (2018).

    ADS  CAS  Google Scholar 

  13. 13.

    Licciardello, S. et al. Coexistence of orbital and quantum critical magnetoresistance in FeSe1−xSx. Phys. Rev. Res 1, 023011 (2019).

    CAS  Google Scholar 

  14. 14.

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  CAS  Google Scholar 

  15. 15.

    Michon, B. et al. Thermodynamic signatures of quantum criticality in cuprate superconductors. Nature 567, 218–222 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).

    ADS  CAS  Google Scholar 

  17. 17.

    van der Marel, D. et al. Quantum critical behaviour in a high-Tc superconductor. Nature 425, 271–274 (2003).

    ADS  Google Scholar 

  18. 18.

    Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    ADS  CAS  Google Scholar 

  19. 19.

    Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54–61 (2015).

    CAS  Google Scholar 

  20. 20.

    Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. SciPost Phys. 6, 061 (2019).

    ADS  MathSciNet  CAS  Google Scholar 

  21. 21.

    Chen, S.-D. et al. Incoherent strange metal sharply bounded by a critical doping in Bi2212. Science 366, 1099–1102 (2019).

    ADS  CAS  Google Scholar 

  22. 22.

    Hussey, N. E., Buhot, J. & Licciardello, S. A tale of two metals: contrasting criticalities in the pnictides and hole-doped cuprates. Rep. Prog. Phys. 81, 052501 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  23. 23.

    Tallon, J. L., Storey, J. G., Cooper, J. R. & Loram, J. W. Locating the pseudogap closing point in cuprate superconductors: absence of entrant or reentrant behavior. Phys. Rev. B 101, 174512 (2020).

    ADS  CAS  Google Scholar 

  24. 24.

    Hussey, N. E., Gordon-Moys, H., Kokalj, J. & McKenzie, R. H. Generic strange-metal behaviour of overdoped cuprates. J. Phys. Conf. Ser. 449, 012004 (2013).

    CAS  Google Scholar 

  25. 25.

    Putzke, C. et al. Reduced Hall carrier density in the overdoped strange metal regime of cuprate super-conductors. Nat. Phys. (2021).

  26. 26.

    Ando, Y. et al. Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors. Phys. Rev. Lett. 92, 197001 (2004).

    ADS  Google Scholar 

  27. 27.

    Božović, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    ADS  Google Scholar 

  28. 28.

    McKenzie, R. H. et al. Violation of Kohler’s rule by the magnetoresistance of a quasi-two-dimensional organic metal. Phys. Rev. B 57, 11854–11857 (1998).

    ADS  CAS  Google Scholar 

  29. 29.

    Kiritsis, E. & Li, L. Quantum criticality and DBI magneto-resistance. J. Phys. A 50, 115402 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8, 021049 (2018).

    CAS  Google Scholar 

  31. 31.

    Boyd, C. & Phillips, P. W. Single-parameter scaling in the magnetoresistance of optimally doped La2−xSrxCuO4. Phys. Rev. B 100, 155139 (2019).

    ADS  CAS  Google Scholar 

  32. 32.

    Singleton, J. Temperature scaling behavior of the linear magnetoresistance observed in high-temperature superconductors. Phys. Rev. Mater. 4, 061801 (2020).

    CAS  Google Scholar 

  33. 33.

    Bangura, A. F. et al. Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6+δ as revealed by quantum oscillations. Phys. Rev. B 82, 140501 (2010).

    ADS  Google Scholar 

  34. 34.

    Wise, W. D. et al. Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Nat. Phys. 5, 213–216 (2009).

    CAS  Google Scholar 

  35. 35.

    Hayes, I. M. et al. Magnetoresistance scaling reveals symmetries of the strongly correlated dynamics in BaFe2(As1−xPx)2. Phys. Rev. Lett. 121, 197002 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition temperature superconductor. Nature 425, 814–817 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Platé, M. et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ. Phys. Rev. Lett. 95, 077001 (2005).

    ADS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Abdel-Jawad, M. et al. Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 2, 821–825 (2006).

    CAS  Google Scholar 

  39. 39.

    Hayes, I. M. et al. Superconductivity and quantum criticality linked by the Hall effect in a strange metal. Nat. Phys. 17, 58–62 (2021).

    CAS  Google Scholar 

  40. 40.

    Knolle, J. & Cooper, N. R. Anomalous de Haas–van Alphen effect in InAs/GaSb quantum wells. Phys. Rev. Lett. 118, 176801 (2017).

    ADS  Google Scholar 

  41. 41.

    Tyler, A. W. An Investigation into the Magnetotransport Properties of Layered Superconducting Perovskites. PhD thesis, Univ. Cambridge (1997).

  42. 42.

    Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S. & Flower, N. E. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Physica C 176, 95–105 (1991).

    ADS  CAS  Google Scholar 

  43. 43.

    Ono, S. & Ando, Y. Evolution of the resistivity anisotropy in Bi2Sr2−xLaxCuO6+δ single crystals for a wide range of hole doping. Phys. Rev. B 67, 104512 (2003).

    ADS  Google Scholar 

  44. 44.

    Shibauchi, T. et al. Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors. Proc. Natl Acad. Sci. USA 105, 7120–7123 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    French, M. M. J. & Hussey, N. E. Orbital origin of field-induced quantum criticality in overdoped Tl2Ba2CuO6+x. Proc. Natl Acad. Sci. USA 105, E58 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mackenzie, A. P., Julian, S. R., Sinclair, D. C. & Lin, C. T. Normal-state magnetotransport in superconducting Tl2Ba2CuO6+δ to millikelvin temperatures. Phys. Rev. B 53, 5848–5855 (1996).

    ADS  CAS  Google Scholar 

  47. 47.

    Hussey, N. E. et al. Angular dependence of the c-axis normal state magnetoresistance in single crystal Tl2Ba2CuO6+δ. Phys. Rev. Lett. 76, 122–125 (1996).

    ADS  CAS  Google Scholar 

  48. 48.

    French, M. M. J., Analytis, J. G., Carrington, A., Balicas, L. & Hussey, N. E. Tracking anisotropic scattering in overdoped Tl2Ba2CuO6+δ above 100 K. New J. Phys. 11, 055057 (2009).

    ADS  Google Scholar 

  49. 49.

    Rourke, P. M. C. et al. A detailed de Haas–van Alphen effect study of the overdoped cuprate Tl2Ba2CuO6+δ. New J. Phys. 12, 105009 (2010).

    ADS  Google Scholar 

  50. 50.

    Ong, N. P. Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. Phys. Rev. B 43, 193–201 (1991).

    ADS  CAS  Google Scholar 

  51. 51.

    Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).

  52. 52.

    Clarke, D. C., Strong, S. P. & Anderson, P. W. Conductivity between Luttinger liquids in the confinement regime and c-axis conductivity in the cuprate superconductors. Phys. Rev. Lett. 74, 4499–4502 (1995).

    ADS  CAS  Google Scholar 

  53. 53.

    Grissonnanche, G. et al. Measurement of the Planckian scattering rate. Preprint at (2020).

  54. 54.

    Kondo, T., Takeuchi, T., Tsuda, S. & Shin, S. Electrical resistivity and scattering processes in (Bi,Pb)2(Sr,La)2CuO6+δ studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 74, 224511 (2006).

    ADS  Google Scholar 

  55. 55.

    Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    ADS  CAS  Google Scholar 

  56. 56.

    Bangura, A. F. et al. Small Fermi surface pockets in underdoped high-temperature superconductors: observation of Shubnikov–de Haas oscillations in YBa2Cu4O8. Phys. Rev. Lett. 100, 047004 (2008).

    ADS  CAS  Google Scholar 

  57. 57.

    Barišić, N. et al. Universal quantum oscillations in the underdoped cuprate superconductors. Nat. Phys. 9, 761–764 (2013).

    Google Scholar 

  58. 58.

    Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 176801 (2017).

    ADS  Google Scholar 

  59. 59.

    Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    ADS  CAS  Google Scholar 

  60. 60.

    Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    ADS  CAS  Google Scholar 

  61. 61.

    Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    ADS  CAS  Google Scholar 

  62. 62.

    Yasui, K. & Kita, T. Theory of the de Haas–van Alphen effect in type-II superconductors. Phys. Rev. B 66, 184516 (2002).

    ADS  Google Scholar 

  63. 63.

    Hartnoll, S. A. & Hofman, D. M. Generalized Lifshitz–Kosevich scaling at quantum criticality from the holographic correspondence. Phys. Rev. B 81, 155125 (2010).

    ADS  Google Scholar 

  64. 64.

    Chan, M. K. et al. In-plane magnetoresistance obeys Kohler’s rule in the pseudogap phase of cuprate superconductors. Phys. Rev. Lett. 113, 177005 (2014).

    ADS  CAS  Google Scholar 

  65. 65.

    Harris, J. M. et al. Violation of Kohler’s rule in the normal-state magnetoresistance of YBa2Cu3O7−δ and La2−xSrxCuO4. Phys. Rev. Lett. 75, 1391–1394 (1995).

    ADS  CAS  Google Scholar 

  66. 66.

    Mirzaei, S. I. et al. Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates. Proc. Natl Acad. Sci. USA 110, 5774–5778 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Proust, C., Vignolle, B., Levallois, J., Adachi, S. & Hussey, N. E. Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa2Cu4O8. Proc. Natl Acad. Sci. USA 113, 13654–13659 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ayres, J. Correlated Electron Systems Under Extreme Conditions: High Fields, High Pressures, Low Temperatures. PhD thesis, Univ. Bristol (2020);

  69. 69.

    Gotlieb, K. et al. Revealing hidden spin–momentum locking in a high-temperature cuprate superconductor. Science 362, 1271–1275 (2018).

    ADS  CAS  Google Scholar 

  70. 70.

    Fuseya, Y. et al. Origin of the large anisotropic g factor of holes in bismuth. Phys. Rev. Lett. 115, 216401 (2015).

    ADS  Google Scholar 

  71. 71.

    Ma, M. et al. Prominent role of spin-orbit coupling in FeSe revealed by inelastic neutron scattering. Phys. Rev. X 7, 021025 (2017).

    Google Scholar 

  72. 72.

    Moses, P. & McKenzie, R. H. Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance of layered Fermi liquids. Phys. Rev. B 60, 7998–8011 (1999).

    ADS  CAS  Google Scholar 

  73. 73.

    Sandeman, K. & Schofield, A. J. Model of anisotropic scattering in a quasi-two-dimensional metal. Phys. Rev. B 63, 094510 (2001).

    ADS  Google Scholar 

Download references


We thank M. Allan, J. G. Analytis, I. Božović, M. S. Golden, B. Goutéraux, C. Pépin, K. Schalm, H. Stoof and S. Vandoren for insightful discussions during the course of this work. We also thank S. Smit and L. Bawden for initial characterization of some of the Bi2201 single crystals and L. Malone for assistance in the growth of the Tl2201 single crystals. J.A. acknowledges the support of the EPSRC-funded CMP-CDT (ref. EP/L015544/1) and an EPSRC Doctoral Prize Fellowship (ref. EP/T517872/1). A.C. acknowledges support of the EPSRC (ref. EP/R011141/1). We also acknowledge the support of the High Field Magnet Laboratory (HFML) at Radboud University, member of the European Magnetic Field Laboratory (EMFL – also supported by the EPSRC, ref. EP/N01085X/1), and the former Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific Research (NWO) (grant no. 16METL01, ‘Strange Metals’). Finally, part of this work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement nos 835279-Catch-22 and 715262-HPSuper).

Author information




J.A., M.B., S.F., A.C. and N.E.H. conceived the overall project. J.A., M.B., M.Č., Y.-T.H., C.P. and N.E.H. performed the high-field measurements. Y.H., E.v.H., J.R.C., C.P., T.K. and T.T. grew and characterized the single-crystal samples. J.A. and A.C. performed the SCTIF calculations. J.A., M.B., J.Z. and N.E.H. wrote the manuscript with input from all of the co-authors.

Corresponding authors

Correspondence to J. Ayres or M. Berben or N. E. Hussey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Nicholas Breznay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Zero-field resistivities of Tl2201 and Bi2201.

a, b, Zero-field, ambient-pressure resistivity ρab(T) curves for representative Tl2201 (a) and Bi2201 (b) crystals investigated in this study. Note the super-linear T dependence for all samples. The spread in absolute magnitudes of ρab(T) is higher in the Tl2201 crystals owing to the fact that they were mounted for pressure measurements and as such, their absolute resistivities were harder to quantify accurately.

Extended Data Fig. 2 Quadrature scaling in overdoped Tl2201.

a, ρab(HT) as measured in Tl2201 with Tc = 26.5 K. H2 behaviour cedes to a H-linear resistivity at high fields. b, c, Scaling plots of [ρab(HT) − ρab(0, 0)]/T versus H/T for overdoped Tl2201 (Tc = 26.5 K). As shown in c, there is a clear breakdown of the scaling at low H/T. d, e, Scaling plots of [ρab(HT) − ρab(0, T)]/T versus H/T for the same sample where ρ(0, T) = (T) = ρ0 + AgT + BT2. Note that Ag does not correspond to A, the full T-linear coefficient of the zero-field resistivity, since part of that is contained within the quadrature form. The inclusion of these additional T-dependent terms makes the data collapse over the full range of T. Taking the derivative with respect to H (as done in the main text) provides another means of isolating the quadrature MR from (T). The dashed lines in all panels represent the quadrature expression \(\Delta {\rho }_{ab}(H)=\alpha {k}_{{\rm{B}}}T\sqrt{1+{(\beta {\mu }_{0}H/T)}^{2}}\) (ρ0 = 15.5 μΩ cm, Ag = 0.14 μΩ cm K−1, B = 0.003 μΩ cm K−2, αkB = 0.04 μΩ cm K−1, γμB = 0.20 μΩ cm T−1). f, The derivatives with respect to magnetic field of the measured curves shown in a. g, When plotted against H/T, the derivatives presented in f collapse onto a universal curve (with the exception of those sections of each field sweep that are in the mixed state).

Extended Data Fig. 3 Success of ADMR-derived modelling of the in-plane transport of overdoped Tl2201.

a, The c-axis ADMR of Tl2201 with Tc = 15 K measured at 50 K and at various (labelled) azimuthal angles taken from ref. 48. b, Projection of the in-plane Fermi surface derived from the ADMR fitting. c, Schematic showing the isotropic T2 component (black solid line) and anisotropic T + T2 component (red solid line) of the scattering rate as deduced from the ADMR fitting. d, Black dots: ρab(T) data for overdoped Tl2201 (Tc = 15 K) in which superconductivity has been suppressed by a magnetic field (H c)46 and corresponding simulation based on the ADMR fitting48. The difference in the residual resistivities is probably because different samples have been used in the two studies46,48. e, Corresponding simulation for RH(T)48. f, Simulation of RH(H) = ρxy(H)/H at various temperatures as indicated. g, Same simulation data plotted versus H/ρ(0) where here, ρ(0) is the zero-field resistivity at each temperature. h, RH(H) versus H/ρ(0) data taken from ref. 25. For overdoped Tl2201 (Tc = 25 K) for comparison with the simulation in g. The larger absolute values of RH in h relative to g are due to the fact that the high-field data in h are taken on a sample with a higher Tc value where the anisotropy in τ−1(ϕ) is expected to be larger.

Extended Data Fig. 4 Failure of ADMR-derived modelling to reproduce quadrature scaling.

a, The field dependence of the longitudinal resistivity (ρ(T)) determined with the SCTIF using parameters derived from the ADMR parameterization for overdoped Tl2201. b, Δρ—the change in ρxx with field—at selected temperatures. c, Corresponding derivative plots of ρ(H) showing distinctly non-quadrature behaviour. d, As a consequence, the data fail to collapse when plotted against μ0H/T.

Extended Data Fig. 5 Failure of the SCTIF to reproduce both the MR and Hall response.

Simulations of the MR and Hall responses within the SCTIF given different parameterizations of vF(ϕ) and τ−1(ϕT). In each simulation, the experimentally determined Fermi surface (kF(ϕ)) has been used. Note that the SCTIF is slow to converge at low fields and so the simulations do not extend all the way to H = 0. Simulation 1, ADMR-derived parameterization of overdoped Tl2201 albeit with no anisotropy at T = 0 and an anisotropic term that increases strictly linearly with T. Simulation 2, A scenario incorporating the vF anisotropy derived from tight-binding modelling of ARPES measurements37. Simulation 3, A scenario in which the anisotropy ratio of τ−1(ϕ) is strictly T-independent in order to generate an MR with a maximum slope that is also independent of temperature (reminiscent of quadrature scaling). Simulation 4, A scenario in which a similar τ−1(ϕ) parameterization to that used to model Nd-LSCO53 is applied to overdoped Tl2201. Simulation 5, Simulation for overdoped Bi2201 with an enhanced anisotropy in vF and τ−1(T = 0) consistent with ARPES54. Column 1, The Fermi surface parameterizations kF(ϕ) and vF(ϕ). Column 2, τ−1(ϕT). Column 3, dρ/d(μ0H) versus H. Column 4, dρ/d(μ0H) versus H/T. Column 5, RH(HT).

Extended Data Fig. 6 Kohler versus quadrature scaling in Bi2201.

a, Δρab/ρab(0) plotted versus (H/ρab(0))2 for a Bi2201 sample with Tc = 13 K. In a system that shows Kohler scaling, these curves would collapse. Clearly, that is not the case here. b, Δρab plotted versus H2 for the same Bi2201 sample. The dotted lines are fits to the function f(x) = A(μ0H)2 in the regions where the MR is strictly quadratic. Note that the quadrature form of the MR is only purely quadratic in the zero-field limit whereas fits to the data are taken at finite field ranges. Our simulations have shown that fitting up to μ0Hmax = βT (with β as given in Fig. 2 of the main text) agrees with the zero-field limit within a few percent and falls within our experimental error. c, T dependence of ab(0) (with A taken from the fits in b) compared to the square of the Hall coefficient \({R}_{{\rm{H}}}^{2}\). d, Temperature derivative of ρab(T) for the same sample. Note that the onset of superconducting fluctuations appears only below 30 K. e, The product AT plotted over the full temperature range. The dotted line is a guide to the eye.

Extended Data Table 1 Tl2201 samples studied
Extended Data Table 2 Bi2201 samples studied
Extended Data Table 3 ADMR simulation parameters

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayres, J., Berben, M., Čulo, M. et al. Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing