Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The 13CO-rich atmosphere of a young accreting super-Jupiter



Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis1,2. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System1,3, but do vary on galactic scales with a 12C/13C isotopologue ratio of around 68 in the current local interstellar medium4,5,6. In molecular clouds and protoplanetary disks, 12CO/13CO ratios can be altered by ice and gas partitioning7, low-temperature isotopic ion-exchange reactions8 and isotope-selective photodissociation9. Here we report observations of 13CO in the atmosphere of the young, accreting super-Jupiter TYC 8998-760-1 b, at a statistical significance of more than six sigma. Marginalizing over the planet’s atmospheric temperature structure, chemical composition and spectral calibration uncertainties suggests a 12CO/13CO ratio of \({31}_{-10}^{+17}\)(90% confidence), a substantial enrichment in 13C with respect to the terrestrial standard and the local interstellar value. As the current location of TYC 8998-760-1 b at greater than or equal to 160 astronomical units is far beyond the CO snowline, we postulate that it accreted a substantial fraction of its carbon from ices enriched in 13C through fractionation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Observed SINFONI spectrum of exoplanet TYC 8998 b and cross-correlation signal of 13CO.
Fig. 2: Spectral retrieval results.
Fig. 3: Cartoon of the birth environments of planets in a protoplanetary disk.

Data availability

The data are publicly available from the ESO Science Archive with the programme ID 2103.C-5012(C).

Code availability

The data analysis was performed with custom Python scripts following the standard procedure. The code and reduced spectrum are available from The atmospheric retrieval models use petitRADTRANS, which is available from, and the nested sampling tool PyMultiNest, which is available from


  1. 1.

    Clayton, D. D. & Nittler, L. R. Astrophysics with presolar stardust. Annu. Rev. Astron. Astrophys. 42, 39–78 (2004).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Wilson, T. L. & Matteucci, F. Abundances in the interstellar medium. Astron. Astrophys. Rev. 4, 1–33 (1992).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Woods, P. M. & Willacy, K. Carbon isotope fractionation in protoplanetary disks. Astrophys. J. 693, 1360–1378 (2009).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Langer, W. D. & Penzias, A. A. 12C/13C isotope ratio in the local interstellar medium from observations of 13C18O in molecular clouds. Astrophys. J. 408, 539–547 (1993).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M. & Wyckoff, S. The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126–1132 (2005).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Prantzos, N., Aubert, O. & Audouze, J. Evolution of the carbon and oxygen isotopes in the Galaxy. Astron. Astrophys. 309, 760–774 (1996).

    ADS  CAS  Google Scholar 

  7. 7.

    Smith, R. L., Pontoppidan, K. M., Young, E. D. & Morris, M. R. Heterogeneity in 12CO/13CO abundance ratios toward solar-type young stellar objects. Astrophys. J. 813, 120 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Langer, W. D., Graedel, T. E., Frerking, M. A. & Armentrout, P. B. Carbon and oxygen isotope fractionation in dense interstellar clouds. Astrophys. J. 277, 581–604 (1984).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Bally, J. & Langer, W. D. Isotope-selective photodestruction of carbon monoxide. Astrophys. J. 255, 143–148 (1982).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Bohn, A. J. et al. The Young Suns Exoplanet Survey: detection of a wide-orbit planetary-mass companion to a solar-type Sco–Cen member. Mon. Not. R. Astron. Soc. 492, 431–443 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    Pecaut, M. J. & Mamajek, E. E. The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association. Mon. Not. R. Astron. Soc. 461, 794–815 (2016).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Bohn, A. J. et al. Two directly imaged, wide-orbit giant planets around the young, solar analog TYC 8998–760–1. Astrophys. J. 898, L16 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Eisenhauer, F. et al. SINFONI—integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT. In Proc. SPIE Vol. 4841 (eds Iye, M. & Moorwood, A. F.M.) 1548–1561 (SPIE, 2003).

  14. 14.

    Bonnet, H. et al. First light of SINFONI at the VLT. Messenger 117, 17–24 (2004).

    ADS  Google Scholar 

  15. 15.

    van Holstein, R. G. et al. A survey of the linear polarization of directly imaged exoplanets and brown dwarf companions with SPHERE-IRDIS. First polarimetric detections revealing disks around DH Tau B and GSC 6214−210 B. Astron. Astrophys. 647, A21 (2021).

    Article  Google Scholar 

  16. 16.

    Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).

    Article  Google Scholar 

  17. 17.

    Buchner, J. et al. Astrophysics X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  18. 18.

    Mollière, P. & Snellen, I. A. G. Detecting isotopologues in exoplanet atmospheres using ground-based high-dispersion spectroscopy. Astron. Astrophys. 622, A139 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. 743, L16 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Mollière, P. et al. Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e. Astron. Astrophys. 640, A131 (2020).

    Article  Google Scholar 

  21. 21.

    Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile- dominated super-Earths. Astrophys. J. 778, 153 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Jørgensen, J. K. et al. The ALMA Protostellar Interferometric Line Survey (PILS). Astron. Astrophys. 595, A117 (2016).

    Article  Google Scholar 

  23. 23.

    Jørgensen, J. K. et al. The ALMA-PILS survey: isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293–2422B. Astron. Astrophys. 620, A170 (2018).

    Article  Google Scholar 

  24. 24.

    Acharyya, K., Fuchs, G. W., Fraser, H. J., van Dishoeck, E. F. & Linnartz, H. Desorption of CO and O2 interstellar ice analogs. Astron. Astrophys. 466, 1005–1012 (2007).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Miotello, A., Bruderer, S. & van Dishoeck, E. F. Protoplanetary disk masses from CO isotopologue line emission. Astron. Astrophys. 572, A96 (2014).

    Article  Google Scholar 

  26. 26.

    Cridland, A. J., Bosman, A. D. & van Dishoeck, E. F. Impact of vertical gas accretion on the carbon-to-oxygen ratio of gas giant atmospheres. Astron. Astrophys. 635, A68 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    Qi, C. et al. Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Feuchtgruber, H. et al. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, A126 (2013).

    Article  Google Scholar 

  30. 30.

    Morley, C. V. et al. Measuring the D/H ratios of exoplanets and brown dwarfs. Astrophys. J. 882, L29 (2019).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pacif. 98, 609–617 (1986).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article  Google Scholar 

  33. 33.

    Shokry, A. et al. Stellar parameters of Be stars observed with X-shooter. Astron. Astrophys. 609, A108 (2018).

    Article  Google Scholar 

  34. 34.

    McDonald, I., Zijlstra, A. A. & Boyer, M. L. Fundamental parameters and infrared excesses of Hipparcos stars. Mon. Not. R. Astron. Soc. 427, 343–357 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Smette, A. et al. Molecfit: a general tool for telluric absorption correction. Astron. Astrophys. 576, A77 (2015).

    Article  Google Scholar 

  36. 36.

    Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS  Article  Google Scholar 

  37. 37.

    Nowak, M. et al. Peering into the formation history of β Pictoris b with VLTI/GRAVITY long-baseline interferometry. Astron. Astrophys. 633, A110 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Wakeford, H. R. et al. High-temperature condensate clouds in super-hot Jupiter atmospheres. Mon. Not. R. Astron. Soc. 464, 4247–4254 (2017).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    Muzerolle, J., Hartmann, L. & Calvet, N. A Brγ probe of disk accretion in T Tauri stars and embedded young stellar objects. Astron. J. 116, 2965–2974 (1998).

    ADS  Article  Google Scholar 

  40. 40.

    Reid, I. N. et al. Meeting the cool neighbors. X. Ultracool dwarfs from the 2MASS all-sky data release. Astron. J. 136, 1290–1311 (2008).

    ADS  Article  Google Scholar 

  41. 41.

    Bryan, M. L. et al. Constraints on the spin evolution of young planetary-mass companions. New Astron. 2, 138–144 (2018).

    Google Scholar 

Download references


We thank E. van Dishoeck, A. Cridland and A. Miotello for discussions on carbon fractionation in protoplanetary disks. We thank K. Chubb for a 13CO line list comparison. Based on observations collected at the European Southern Observatory (ESO) under ESO programme 2103.C-5012(C). Y.Z. and I.A.G.S. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement number 694513. The research of A.J.B. and F.S. leading to these results has received funding from the European Research Council under ERC Starting Grant agreement 678194 (FALCONER). P.M. acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement number 832428. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information




Y.Z. and I.A.G.S. performed the data analysis and wrote the manuscript. A.J.B. led the SINFONI proposal, planned the observations and commented on the manuscript, and is the principal investigator of the Young Suns Exoplanet Survey (YSES) that led to the discovery of the TYC 8998 system. P.M. developed the retrieval models and assisted the data analysis. C.G., M.A.K., E.E.M., T.M., M.R. and F.S. constitute the core team of YSES, contributed to the SINFONI proposal and commented on the manuscript. H.J.H. helped the preparations of the observations and commented on the manuscript.

Corresponding author

Correspondence to Ignas A. G. Snellen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Drake Deming and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematics of the observations of TYC 8998-760-1 b using SINFONI at the Very Large Telescope.

The background image is captured by the SPHERE instrument on the VLT (Credit: ESO/Bohn et al.). The small blue box marks the FOV of SINFONI observations targeting the planet b. Both the host star and planet c are outside the FOV. An example of the wavelength-collapsed image is shown in the enlarged blue box, showing negligible contribution from starlight.

Extended Data Fig. 2 Posteriors of retrieved parameters.

a, Posteriors of the retrieved parameters and temperature structure for the full (cyan) and reduced (red) models. The vertical dashed lines denote the 5%, 50% and 95% quantiles (90% uncertainties) of the distribution. b, TP profile. The shaded regions with decreasing colour saturation show 1σ, 2σ and 3σ temperature uncertainty envelopes, respectively. The black dashed line shows the flux average of the emission contribution function. The opaqueness of the temperature uncertainty envelopes has been scaled by this contribution function. c, Fitting statistics of the full and reduced retrieval model, where ln(Z) and ln(Bm) represent the logarithm of Bayesian evidence and Bayes factor, respectively.

Extended Data Fig. 3 Posteriors of the retrieved parameters for the data of individual nights.

Similar to Extended Data Fig. 2a.

Extended Data Fig. 4 Cross-correlation signal of 13CO from individual nights and bandheads.

a, Observational residuals of the two nights separately. b, Cross-correlation signal from the individual nights. c, Filtered observational residuals of the two 13CO bandheads separately. d, Cross-correlation signal from the individual bandheads.

Extended Data Fig. 5 Impact of telluric absorption lines and cross-correlation signal of 13CO at the extended wavelength region.

a, Comparison of the telluric transmission model with residuals. Some noise is attributed to imperfect telluric correction as noted by dotted grey lines. b, Cross-correlation function between the telluric model and the 13CO model, showing no correlation between them.

Extended Data Fig. 6 K-band spectrum of the brown dwarf 2M0355 taken by Keck/NIRSPEC and the cross-correlation signal of 13CO.

The black line shows the observed spectrum and the orange line is the best-fit model obtained by retrieval analysis. Bottom: CCF between the 13CO model and observational residuals. The peak at zero velocity clearly shows the detection of 13CO.

Extended Data Table 1 Priors and inferred posteriors of the TYC 8998 b retrieval

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Snellen, I.A.G., Bohn, A.J. et al. The 13CO-rich atmosphere of a young accreting super-Jupiter. Nature 595, 370–372 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing