Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A highly magnetized and rapidly rotating white dwarf as small as the Moon

A Publisher Correction to this article was published on 02 August 2021

This article has been updated


White dwarfs represent the last stage of evolution of stars with mass less than about eight times that of the Sun and, like other stars, are often found in binaries1,2. If the orbital period of the binary is short enough, energy losses from gravitational-wave radiation can shrink the orbit until the two white dwarfs come into contact and merge3. Depending on the component masses, the merger can lead to a supernova of type Ia or result in a massive white dwarf4. In the latter case, the white dwarf remnant is expected to be highly magnetized5,6 because of the strong magnetic dynamo that should arise during the merger, and be rapidly spinning from the conservation of the orbital angular momentum7. Here we report observations of a white dwarf, ZTF J190132.9+145808.7, that exhibits these properties, but to an extreme: a rotation period of 6.94 minutes, a magnetic field ranging between 600 megagauss and 900 megagauss over its surface, and a stellar radius of \({2140}_{-230}^{+160}\) kilometres, only slightly larger than the radius of the Moon. Such a small radius implies that the star’s mass is close to the maximum white dwarf mass, or Chandrasekhar mass. ZTF J190132.9+145808.7 is likely to be cooling through the Urca processes (neutrino emission from electron capture on sodium) because of the high densities reached in its core.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Gaia colour–magnitude diagram.
Fig. 2: ZTF J1901+1458 lightcurve.
Fig. 3: ZTF J1901+1458 optical spectrum.
Fig. 4: Mass–radius relation.

Data availability

Upon request, I.C. will provide the reduced photometric lightcurves and spectroscopic data, and available ZTF data for the object. The spectroscopic data and photometric lightcurves are also available in the GitHub repository ZTF data are accessible in the ZTF database. The astrometric and photometric data are already in the public domain, and they are readily accessible in the Gaia and Pan-STARSS catalogues and in the Swift database.

Code availability

We used the pyphot package ( and the package70. The LRIS spectra were reduced using the Lpipe pipeline71. Upon request, I.C. will provide the code used to analyse the spectroscopic and photometric data.

Change history


  1. Brown, W. R. et al. The ELM Survey. VIII. Ninety-eight double white dwarf binaries. Astrophys. J. 889, 49 (2020).

    ADS  CAS  Google Scholar 

  2. Burdge, K. B. et al. A systematic search of Zwicky Transient Facility data for ultracompact binary LISA-detectable gravitational-wave sources. Astrophys. J. 905, 32 (2020).

    ADS  CAS  Google Scholar 

  3. Shen, K. J. Every interacting double white dwarf binary may merge. Astrophys. J. Lett. 805, L6 (2015).

    ADS  Google Scholar 

  4. Dan, M., Rosswog, S., Brüggen, M. & Podsiadlowski, P. The structure and fate of white dwarf merger remnants. Mon. Not. R. Astron. Soc. 438, 14–34 (2014).

    ADS  CAS  Google Scholar 

  5. Tout, C. A. et al. Binary star origin of high field magnetic white dwarfs. Mon. Not. R. Astron. Soc. 387, 897–901 (2008).

    ADS  Google Scholar 

  6. Garca-Berro, E. et al. Double degenerate mergers as progenitors of high-field magnetic white dwarfs. Astrophys. J. 749, 25 (2012).

    ADS  Google Scholar 

  7. Schwab, J. Evolutionary models for the remnant of the merger of two carbon-oxygen core white dwarfs. Astrophys. J. 906, 53 (2021).

    ADS  CAS  Google Scholar 

  8. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pacif. 131, 018002 (2019).

    ADS  Google Scholar 

  9. Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  10. Harding, L. K. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope. Mon. Not. R. Astron. Soc. 457, 3036–3049 (2016).

    ADS  Google Scholar 

  11. Hermes, J. J. et al. White dwarf rotation as a function of mass and a dichotomy of mode line widths: Kepler observations of 27 pulsating DA white dwarfs through K2 Campaign 8. Astrophys. J. Suppl. 232, 23 (2017).

    ADS  Google Scholar 

  12. Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pacif. 107, 375 (1995).

    ADS  Google Scholar 

  13. Ruder, H., Wunner, G., Herold, H. & Geyer, F. Atoms in Strong Magnetic Fields. Quantum Mechanical Treatment and Applications in Astrophysics and Quantum Chaos (Springer, 1994).

  14. Ferrario, L., de Martino, D. & Gänsicke, B. T. Magnetic white dwarfs. Space Sci. Rev. 191, 111–169 (2015).

    ADS  Google Scholar 

  15. Ferrario, L. et al. EUVE J0317–855: a rapidly rotating, high-field magnetic white dwarf. Mon. Not. R. Astron. Soc. 292, 205–217 (1997).

    ADS  CAS  Google Scholar 

  16. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS  Google Scholar 

  17. Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  CAS  Google Scholar 

  18. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at (2016).

  19. Camisassa, M. E. et al. The evolution of ultra-massive white dwarfs. Astron. Astrophys. 625, A87 (2019).

    CAS  Google Scholar 

  20. Siess, L. Evolution of massive AGB stars. II. Model properties at non-solar metallicity and the fate of super-AGB stars. Astron. Astrophys. 476, 893–909 (2007).

    ADS  CAS  Google Scholar 

  21. Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Astrophys. J. 748, 35 (2012).

    ADS  Google Scholar 

  22. Külebi, B., Jordan, S., Nelan, E., Bastian, U. & Altmann, M. Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317–853 from an HST parallax measurement. Astron. Astrophys. 524, A36 (2010).

    ADS  Google Scholar 

  23. Pshirkov, M. S. et al. Discovery of a hot ultramassive rapidly rotating DBA white dwarf. Mon. Not. R. Astron. Soc. 499, L21–L25 (2020).

    ADS  Google Scholar 

  24. Tsuruta, S. & Cameron, A. G. W. URCA shells in dense stellar interiors. Astrophys. Space Sci. 7, 374–406 (1970).

    ADS  CAS  Google Scholar 

  25. Schwab, J., Bildsten, L. & Quataert, E. The importance of Urca-process cooling in accreting ONe white dwarfs. Mon. Not. R. Astron. Soc. 472, 3390–3406 (2017).

    ADS  CAS  Google Scholar 

  26. Schwab, J. Cooling models for the most massive white dwarfs. Astrophys. J. (in the press).

  27. Deloye, C. J. & Bildsten, L. Gravitational settling of 22Ne in liquid white dwarf interiors: cooling and seismological effects. Astrophys. J. 580, 1077–1090 (2002).

    ADS  CAS  Google Scholar 

  28. Kilic, M. et al. The 100 pc white dwarf sample in the SDSS footprint. Astrophys. J. 898, 84 (2020).

    ADS  CAS  Google Scholar 

  29. Holberg, J. B. & Bergeron, P. Calibration of synthetic photometry using DA white dwarfs. Astron. J. 132, 1221–1233 (2006).

    ADS  CAS  Google Scholar 

  30. Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Jpn 113, 409–435 (2001).

    ADS  Google Scholar 

  31. Van Grootel, V. et al. The instability strip of ZZ Ceti white dwarfs. I. Introduction of time-dependent convection. Astron. Astrophys. 539, A87 (2012).

    Google Scholar 

  32. Maeda, K. & Shibahashi, H. Pulsations of pre-white dwarfs with hydrogen-dominated atmospheres. Publ. Astron. Soc. Pacif. 66, 76 (2014).

    ADS  Google Scholar 

  33. Quirion, P. O., Fontaine, G. & Brassard, P. Wind competing against settling: a coherent model of the GW Virginis instability domain. Astrophys. J. 755, 128 (2012).

    ADS  Google Scholar 

  34. Burdge, K. B. et al. General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system. Nature 571, 528–531 (2019).

    ADS  CAS  Google Scholar 

  35. Burdge, K. B. et al. Orbital decay in a 20 minute orbital period detached binary with a hydrogen-poor low-mass white dwarf. Astrophys. J. Lett. 886, L12 (2019).

    ADS  CAS  Google Scholar 

  36. Gentile Fusillo, N. P. & et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS  Google Scholar 

  37. Graham, M. J., Drake, A. J., Djorgovski, S. G., Mahabal, A. A. & Donalek, C. Using conditional entropy to identify periodicity. Mon. Not. R. Astron. Soc. 434, 2629–2635 (2013).

    ADS  Google Scholar 

  38. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  39. Rosner, W., Wunner, G., Herold, H. & Ruder, H. Hydrogen atoms in arbitrary magnetic fields. I. Energy levels and wavefunctions. J. Phys. B 17, 29–52 (1984).

    ADS  Google Scholar 

  40. Forster, H. et al. Hydrogen atoms in arbitrary magnetic fields. II. Bound–bound transitions. J. Phys. B 17, 1301–1319 (1984).

    ADS  CAS  Google Scholar 

  41. Henry, R. J. W. & Oconnell, R. F. Hydrogen spectrum in magnetic white dwarfs: H alpha, H beta and H gamma transitions. Publ. Astron. Soc. Pacif. 97, 333–339 (1985).

    ADS  CAS  Google Scholar 

  42. Wunner, G., Roesner, W., Herold, H. & Ruder, H. Stationary hydrogen lines in white dwarf magnetic fields and the spectrum of the magnetic degenerate GRW + 70 8247. Astron. Astrophys. 149, 102–108 (1985).

    ADS  CAS  Google Scholar 

  43. Tremblay, P. E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey Data Release 4. Astrophys. J. 730, 128 (2011).

    ADS  Google Scholar 

  44. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    ADS  CAS  Google Scholar 

  45. Bohlin, R. C., Hubeny, I. & Rauch, T. New grids of pure-hydrogen white dwarf NLTE model atmospheres and the HST/STIS flux calibration. Astron. J. 160, 21 (2020).

    ADS  CAS  Google Scholar 

  46. Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron–positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. 126 (Suppl.), 501–516 (2000).

    Google Scholar 

  47. Schwab, J. python-helmholtz: Python bindings for Frank Timmes’ Helmholtz EoS. (2020).

  48. Hamada, T. & Salpeter, E. E. Models for zero-temperature stars. Astrophys. J. 134, 683 (1961).

    ADS  MathSciNet  CAS  Google Scholar 

  49. Tolman, R. C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939).

    ADS  MATH  Google Scholar 

  50. Oppenheimer, J. R. & Volkoff, G. M. On massive neutron cores. Phys. Rev. 55, 374–381 (1939).

    ADS  CAS  MATH  Google Scholar 

  51. Miyaji, S., Nomoto, K., Yokoi, K. & Sugimoto, D. Supernova triggered by electron captures. Publ. Astron. Soc. Jpn 32, 303–329 (1980).

    ADS  CAS  Google Scholar 

  52. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 192, 3 (2011).

    ADS  Google Scholar 

  53. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. 208, 4 (2013).

    ADS  Google Scholar 

  54. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. Astrophys. J. Suppl. 220, 15 (2015).

    ADS  Google Scholar 

  55. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. 234, 34 (2018).

    ADS  Google Scholar 

  56. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. 243, 10 (2019).

    ADS  CAS  Google Scholar 

  57. Williams, K. A., Montgomery, M. H., Winget, D. E., Falcon, R. E. & Bierwagen, M. Variability in hot carbon-dominated atmosphere (hot DQ) white dwarfs: rapid rotation? Astrophys. J. 817, 27 (2016).

    ADS  Google Scholar 

  58. Ferrario, L., Wickramasinghe, D. & Kawka, A. Magnetic fields in isolated and interacting white dwarfs. Adv. Space Res. 66, 1025–1056 (2020).

    ADS  CAS  Google Scholar 

  59. Montgomery, M. H. et al. SDSS J142625.71 + 575218.3: a prototype for a new class of variable white dwarf. Astrophys. J. Lett. 678, L51 (2008).

    ADS  Google Scholar 

  60. Dufour, P., Fontaine, G., Liebert, J., Williams, K. & Lai, D. K. SDSS J142625.71 + 575218.3: the first pulsating white dwarf with a large detectable magnetic field. Astrophys. J. Lett. 683, L167 (2008).

    ADS  CAS  Google Scholar 

  61. Green, E. M., Dufour, P., Fontaine, G. & Brassard, P. Follow-up studies of the pulsating magnetic white dwarf SDSS J142625.71 + 575218.3. Astrophys. J. 702, 1593–1603 (2009).

    ADS  CAS  Google Scholar 

  62. Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M. & Kepler, S. O. Pulsating white dwarfs: new insights. Astron. Astrophys. Rev. 27, 7 (2019).

    ADS  Google Scholar 

  63. Beauchamp, A. et al. Spectroscopic studies of DB white dwarfs: the instability strip of the pulsating DB (V777 Herculis) stars. Astrophys. J. 516, 887–891 (1999).

    ADS  Google Scholar 

  64. Fuller, J., Cantiello, M., Stello, D., Garcia, R. A. & Bildsten, L. Asteroseismology can reveal strong internal magnetic fields in red giant stars. Science 350, 423–426 (2015).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  65. Lecoanet, D., Vasil, G. M., Fuller, J., Cantiello, M. & Burns, K. J. Conversion of internal gravity waves into magnetic waves. Mon. Not. R. Astron. Soc. 466, 2181–2193 (2017).

    ADS  Google Scholar 

  66. Loi, S. T. & Papaloizou, J. C. B. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos. Mon. Not. R. Astron. Soc. 477, 5338–5357 (2018).

    ADS  CAS  Google Scholar 

  67. Loi, S. T. Magneto-gravity wave packet dynamics in strongly magnetized cores of evolved stars. Mon. Not. R. Astron. Soc. 493, 5726–5742 (2020).

    ADS  Google Scholar 

  68. Stello, D. et al. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars. Nature 529, 364–367 (2016).

    ADS  CAS  Google Scholar 

  69. Cantiello, M., Fuller, J. & Bildsten, L. Asteroseismic signatures of evolving internal stellar magnetic fields. Astrophys. J. 824, 14 (2016).

    ADS  Google Scholar 

  70. Foreman-Mackey, D. Scatterplot matrices in python. J. Open Source Softw. 1, 24 (2016);

    ADS  Article  Google Scholar 

  71. Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pacif. 131, 084503 (2019).

    ADS  Google Scholar 

Download references


The authors thank S.-C. Leung and S. Phinney for discussions, and N. Reindl and M. Kilic for comments. I.C. is a Sherman Fairchild Fellow at Caltech and thanks the Burke Institute at Caltech for supporting her research. J.F. acknowledges support through an Innovator Grant from the Rose Hills Foundation, and the Sloan Foundation through grant FG-2018-10515. K.B.B. thanks NASA and the Heising Simons Foundation for supporting his research. J.S. is supported by the A. F. Morrison Fellowship in Lick Observatory and by the US National Science Foundation (NSF) through grant ACI-1663688. This work is based on observations obtained with the Samuel Oschin 48-inch telescope and the Palomar Observatory 60-inch telescope as part of the ZTF project. ZTF is supported by the NSF under grant no. AST-1440341 and a collaboration including Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, and Lawrence Berkeley National Laboratories. Operations are conducted by Caltech Optical Observatories, IPAC and the University of Washington. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. This work has made use of data from the European Space Agency (ESA) mission Gaia (, processed by the Gaia Data Processing and Analysis Consortium (DPAC; Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, NASA under grant no. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, NSF grant no. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations



I.C. reduced the ultraviolet data, conducted the spectral and photometric analysis, identified the magnetic field and is the primary author of the manuscript. K.B.B. performed the period search on ZTF data and reduced the optical data. I.C. and J.H. conducted the mass–radius analysis. I.C., K.B.B., J.F., J.H., S.R.K., T.A.P., H.B.R. and J.S. contributed to the physical interpretation of the object. J.S. constructed preliminary MESA models for the object. I.A., A.D., D.A.D., A.A.M., F.J.M., R.S. and M.T.S. contributed to the implementation of ZTF. G.H. is a co-PI of the ZTF Mid-Scale Innovations Program (MSIP). M.J.G. is the project scientist, E.C.B. is the survey scientist, T.A.P. is the co-PI and S.R.K. is the PI of ZTF.

Corresponding author

Correspondence to Ilaria Caiazzo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Photometric fit.

The blue solid line shows the best-fitting model spectrum, fitted to Pan-STARRS and Swift photometry to determine Teff, R⁎ and E(B − V). The synthetic photometric values (obtained from the black line) are shown in red. The Swift values are shown in green with 1σ error bars and the Pan-STARRS values in blue with the error that we chose to account for the photometric variability (0.02 mag).

Extended Data Fig. 2 Gaia E(B − V) of the closest stars.

The plot shows the extinction AG as measured by Gaia of the stars within 5 degrees of ZTF 1901+1458 as a function of distance and converted to E(B − V) assuming a reddening law with RV = 3.1. We use the average reddening or the closest stars as a prior for the fitting. The error bars show 1σ errors.

Extended Data Fig. 3 Corner plots.

Corner plots for the photometric fitting: results for the model atmospheres of Tremblay et al.43 (left) and Bohlin et al.45 (right).

Extended Data Fig. 4 Phase-resolved spectra, blue side.

The LRIS phase-resolved spectra of ZTF J1901+1458 in the blue side. Some small variations can be observed in the spectral features with phase, especially in features at ~4,600 Å and at ~3,800 Å.

Extended Data Fig. 5 Phase-resolved spectra, red side.

The LRIS phase-resolved spectra of ZTF J1901+1458 in the red side. Some small variations can be observed in the spectral features with phase: in particular, the feature at ~6,620 Å becomes broader and narrower with phase.

Extended Data Table 1 Photometric data for ZTF J1901+1458
Extended Data Table 2 Identified Balmer transitions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caiazzo, I., Burdge, K.B., Fuller, J. et al. A highly magnetized and rapidly rotating white dwarf as small as the Moon. Nature 595, 39–42 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing