Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A lithium-isotope perspective on the evolution of carbon and silicon cycles


The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth’s climate1,2,3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth’s surface environments4,5,6,7,8,9,10,11,12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Isotope records in carbonates through time.
Fig. 2: Thin-section photomicrographs of representative well preserved carbonates from this study.
Fig. 3: Two-dimensional density heat map of Li-isotope mass-balance results.

Data availability

All geochemical data generated here are included in Supplementary Table 2 and are available on Mendeley Data ( Splits of samples are reposited in the Yale Peabody Museum of Natural History.

Code availability

A description of the global Li mass-balance model is available in Supplementary Information. Additional code (in Python) has been posted on GitHub ( A description of the Li-isotope diagenetic model is available in Supplementary Information.


  1. 1.

    Jaffrés, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007).

    ADS  Google Scholar 

  2. 2.

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    ADS  CAS  Google Scholar 

  3. 3.

    West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    ADS  CAS  Google Scholar 

  4. 4.

    Isson, T. T. et al. Evolution of the global carbon cycle and climate regulation on Earth. Glob. Biogeochem. Cycles 34, 1–28 (2020).

    Google Scholar 

  5. 5.

    Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    ADS  Google Scholar 

  6. 6.

    Mills, B., Lenton, T. M. & Watson, A. J. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc. Natl Acad. Sci. USA 111, 9073–9078 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Coogan, L. A., Gillis, K. M., Pope, M. & Spence, J. The role of low-temperature (off-axis) alteration of the oceanic crust in the global Li-cycle: insights from the Troodos ophiolite. Geochim. Cosmochim. Acta 203, 201–215 (2017).

    ADS  CAS  Google Scholar 

  8. 8.

    Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Krissansen-Totton, J. & Catling, D. C. A coupled carbon-silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).

    CAS  Google Scholar 

  11. 11.

    Keller, C. K. & Wood, B. D. Possibility of chemical weathering before the advent of vascular land plants. Nature 364, 223–225 (1993).

    ADS  CAS  Google Scholar 

  12. 12.

    Ibarra, D. E. et al. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319, 1–43 (2019).

    ADS  CAS  Google Scholar 

  13. 13.

    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    ADS  CAS  Google Scholar 

  15. 15.

    Dellinger, M. et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim. Cosmochim. Acta 164, 71–93 (2015).

    ADS  CAS  Google Scholar 

  16. 16.

    Vigier, N. et al. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta 72, 780–792 (2008).

    ADS  CAS  Google Scholar 

  17. 17.

    Sauzéat, L., Rudnick, R. L., Chauvel, C., Garçon, M. & Tang, M. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet. Sci. Lett. 428, 181–192 (2015).

    ADS  Google Scholar 

  18. 18.

    Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pogge von Strandmann, P. A. E. & Henderson, G. M. The Li isotope response to mountain uplift. Geology 43, 67–70 (2015).

    ADS  Google Scholar 

  20. 20.

    Pogge von Strandmann, P. A. E. et al. Assessing bulk carbonates as archives for seawater Li isotope ratios. Chem. Geol. 530, 119338 (2019).

    ADS  CAS  Google Scholar 

  21. 21.

    Washington, K. E. et al. Lithium isotope composition of modern and fossilized Cenozoic brachiopods. Geology 48, 1058–1061 (2020).

    ADS  CAS  Google Scholar 

  22. 22.

    Fantle, M. S., Barnes, B. D. & Lau, K. V. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annu. Rev. Earth Planet. Sci. 48, 549–583 (2020).

    ADS  CAS  Google Scholar 

  23. 23.

    Dellinger, M. et al. The effects of diagenesis on lithium isotope ratios of shallow marine carbonates. Am. J. Sci. 320, 150–184 (2020).

    ADS  CAS  Google Scholar 

  24. 24.

    Hood, A. van S. & Wallace, M. W. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation. Sedim. Geol. 255–256, 56–71 (2012).

    ADS  Google Scholar 

  25. 25.

    Blättler, C. L. & Higgins, J. A. Testing Urey’s carbonate–silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet. Sci. Lett. 479, 241–251 (2017).

    ADS  Google Scholar 

  26. 26.

    Ahm, A. C. et al. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”. Earth Planet. Sci. Lett. 506, 292–307 (2019).

    ADS  CAS  Google Scholar 

  27. 27.

    Hoffman, P. F. & Lamothe, K. G. Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans. Proc. Natl Acad. Sci. USA 116, 18874–18879 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ahm, A. S. C., Bjerrum, C. J., Blättler, C. L., Swart, P. K. & Higgins, J. A. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta 236, 140–159 (2018).

    ADS  CAS  Google Scholar 

  29. 29.

    Higgins, J. A. et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220, 512–534 (2018).

    ADS  CAS  Google Scholar 

  30. 30.

    Hathorne, E. C. & James, R. H. Temporal record of lithium in seawater: a tracer for silicate weathering? Earth Planet. Sci. Lett. 246, 393–406 (2006).

    ADS  CAS  Google Scholar 

  31. 31.

    Hall, J. M., Chan, L. H., McDonough, W. F. & Turekian, K. K. Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy. Mar. Geol. 217, 255–265 (2005).

    ADS  CAS  Google Scholar 

  32. 32.

    Crockford, P. W. et al. Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite. Geology 49, 442–446 (2021).

    ADS  CAS  Google Scholar 

  33. 33.

    Ullmann, C. V. et al. Partial diagenetic overprint of Late Jurassic belemnites from New Zealand: implications for the preservation potential of δ7Li values in calcite fossils. Geochim. Cosmochim. Acta 120, 80–96 (2013).

    ADS  CAS  Google Scholar 

  34. 34.

    Veizer, J. in Encyclopedia of Paleoclimatology and Ancient Environments (ed. Gornitz, V.) 923–926 (Springler, 2009).

  35. 35.

    Hood, A. van S. & Wallace, M. W. Neoproterozoic marine carbonates and their paleoceanographic significance. Global Planet. Change 160, 28–45 (2018).

    ADS  Google Scholar 

  36. 36.

    Jeffcoate, A. B., Elliott, T., Thomas, A. & Bouman, C. Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand. Geoanal. Res. 28, 161–172 (2004).

    CAS  Google Scholar 

  37. 37.

    Galili, N. et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365, 469–473 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Coogan, L. A. & Dosso, S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth Planet. Sci. Lett. 323–324, 92–101 (2012).

    ADS  Google Scholar 

  39. 39.

    O’Neill, C., Lenardic, A., Höink, T. & Coltice, N. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J., Simon-Miller, A. A., Harder, J. W. & Bullock, M. A.) 473–486 (Univ. Arizona Press, 2013).

  40. 40.

    Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    ADS  CAS  Google Scholar 

  41. 41.

    Rafiei, M. & Kennedy, M. Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation. Nat. Commun. 10, 3448 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Clark, S. K. & Johnson, T. M. Effective isotopic fractionation factors for solute removal by reactive sediments: a laboratory microcosm and slurry study. Environ. Sci. Technol. 42, 7850–7855 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Conley, D. J. et al. Biosilicification drives a decline of dissolved Si in the oceans through geologic time. Front. Mar. Sci. 4, 397 (2017).

    Google Scholar 

  44. 44.

    Pogge von Strandmann, P. A. E. et al. Global climate stabilisation by chemical weathering during the Hirnantian glaciation. Geochem. Perspect. Lett. 3, 230–237 (2017).

    Google Scholar 

  45. 45.

    Lechler, M., Pogge von Strandmann, P. A. E., Jenkyns, H. C., Prosser, G. & Parente, M. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. Lett. 432, 210–222 (2015).

    ADS  CAS  Google Scholar 

  46. 46.

    Pogge von Strandmann, P. A. E., Jenkyns, H. C. & Woodfine, R. G. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6, 668–672 (2013).

    ADS  CAS  Google Scholar 

  47. 47.

    Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, (2002).

  48. 48.

    McArthur, J. M., Howarth, R. J. & Shields-Zhou, G. A. in A Geologic Time Scale 2012 (eds Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G.) 127–144 (Cambridge Univ. Press, 2012).

  49. 49.

    Holland, H. D. Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

    ADS  CAS  Google Scholar 

  50. 50.

    Tajika, E. & Matsui, T. Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the earth. Earth Planet. Sci. Lett. 113, 251–266 (1992).

    ADS  CAS  Google Scholar 

Download references


N.J.P. acknowledges funding from the Alternative Earths NASA Astrobiology Institute and the Packard Foundation. P.A.E.P.v.S. was funded by a European Research Council (ERC) consolidator grant (682760 CONTROLPASTCO2). A.v.S.H. acknowledges funding from an Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA; DE190100988). B.K.-A. acknowledges financial support from the Yale Institute for Biospheric Studies. We thank J. Utrup, S. H. Butts and the Yale Peabody Museum of Natural History for providing brachiopods and carbonate samples.

Author information




B.K.-A., N.J.P., P.A.E.P.v.S. and J.A.R.K. designed the research. E.J.B., A.v.S.H., D.S.J., F.A.M., M.W.W., J.A.R.K., A.H., F.O.O., C.W., M.D. and N.J.P. collected samples. B.K.-A., P.A.E.P.v.S., J.A.R.K., M.D., J.G.M., D.A., F.A.M., A.J.W. and J.A.H. conducted geochemical analyses. J.A.R.K. wrote the Li-isotope mass-balance model. B.K.-A. wrote the Li-isotope diagenetic model. B.K.-A., N.J.P., P.A.E.P.v.S. and J.A.R.K. analysed the data and wrote the paper. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Boriana Kalderon-Asael or Noah J. Planavsky or Philip A. E. Pogge von Strandmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jeremy Caves Rugenstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1 – 29; Supplementary Tables 1 – 3; Supplementary Methods; Supplementary Discussion; Global lithium isotope mass balance; Diagenetic modelling and Supplementary References.

Supplementary Table 1

Description of the samples analysed in this study at a) Yale University; b) Oxford and University College London.

Supplementary Table 2

Geochemical data generated in this study: a) δ7Li (in ‰), Li, Mg, Al, Ca, Ti, Mn, Rb, Sr, Pb concentrations (in ppm) and δ44/40Ca (in ‰) of the samples analysed at Yale University; b) δ7Li (in ‰), Li/Ca, Al/Ca, Mn/Ca, Sr/Ca and Mg/Ca elemental ratios of the samples analysed at Oxford and University College London.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalderon-Asael, B., Katchinoff, J.A.R., Planavsky, N.J. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing