Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

r-Process elements from magnetorotational hypernovae

Abstract

Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1,2,3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4,5,6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7,8,9,10,11,12,13. Here we report the element abundance pattern of the extremely metal-poor star SMSS J200322.54−114203.3. We observe a large enhancement in r-process elements, with very low overall metallicity. The element abundance pattern is well matched by the yields of a single 25-solar-mass magnetorotational hypernova. Such a hypernova could produce not only the r-process elements, but also light elements during stellar evolution, and iron-peak elements during explosive nuclear burning. Hypernovae are often associated with long-duration γ-ray bursts in the nearby Universe8. This connection indicates that similar explosions of fast-spinning strongly magnetized stars occurred during the earliest epochs of star formation in our Galaxy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: r-Process element abundance pattern of SMSS 2003−1142.
Fig. 2: Comparison of models and data.

Data availability

The data used in this study are available in the ESO archive (https://archive.eso.org/eso/eso_archive_main.html) under program ID 2103.D-5062(A).

Code availability

The stellar line analysis program MOOG is available at https://www.as.utexas.edu/~chris/moog.html. The stellar model atmospheres are available at http://kurucz.harvard.edu/grids.html.

References

  1. 1.

    Ji, A. P., Frebel, A., Chiti, A. & Simon, J. D. r-Process enrichment from a single event in an ancient dwarf galaxy. Nature 531, 610–613 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. 2.

    Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. 3.

    Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  4. 4.

    Winteler, C. et al. Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys. J. 750, L22 (2012).

    ADS  Google Scholar 

  5. 5.

    Haynes, C. J. & Kobayashi, C. Galactic simulations of r-process elemental abundances. Mon. Not. R. Astron. Soc. 483, 5123–5134 (2019).

    CAS  ADS  Google Scholar 

  6. 6.

    Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. 7.

    Umeda, H. & Nomoto, K. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star. Nature 422, 871–873 (2003).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. 8.

    Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    CAS  ADS  Google Scholar 

  9. 9.

    Frebel, A. & Norris, J. E. Near-field cosmology with extremely metal-poor stars. Annu. Rev. Astron. Astrophys. 53, 631–688 (2015).

    CAS  ADS  Google Scholar 

  10. 10.

    Bessell, M. S. et al. Nucleosynthesis in a primordial supernova: carbon and oxygen abundances in SMSS J031300.36−670839.3. Astrophys. J. 806, L16 (2015).

    ADS  Google Scholar 

  11. 11.

    Nordlander, T. et al. 3D NLTE analysis of the most iron-deficient star, SMSS0313−6708. Astron. Astrophys. 597, A6 (2017).

    Google Scholar 

  12. 12.

    Ishigaki, M. N. et al. The initial mass function of the first stars inferred from extremely metal-poor stars. Astrophys. J. 857, 46 (2018).

    ADS  Google Scholar 

  13. 13.

    Ezzeddine, R. et al. Evidence for an aspherical population III supernova explosion inferred from the hyper-metal-poor star HE 1327−2326. Astrophys. J. 876, 97 (2019).

    CAS  ADS  Google Scholar 

  14. 14.

    Wolf, C. et al. SkyMapper southern survey: first data release (DR1). Publ. Astron. Soc. Aust. 35, e010 (2018).

    ADS  Google Scholar 

  15. 15.

    Da Costa, G. S. et al. The SkyMapper DR1.1 search for extremely metal-poor stars. Mon. Not. R. Astron. Soc. 489, 5900–5918 (2019).

    ADS  Google Scholar 

  16. 16.

    Maeder, A. & Meynet, G. Rotating massive stars: from first stars to gamma ray bursts. Rev. Mod. Phys. 84, 25–63 (2012).

    CAS  ADS  Google Scholar 

  17. 17.

    Sneden, C. S., Cowan, J. J. & Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 46, 241–288 (2008).

    CAS  ADS  Google Scholar 

  18. 18.

    Kobayashi, C., Karakas, A. I. & Lugaro, M. The origin of elements from carbon to uranium. Astrophys. J. 900, 179 (2020).

    CAS  ADS  Google Scholar 

  19. 19.

    Symbalisty, E. M. D. Magnetorotational iron core collapse. Astrophys. J. 285, 729–746 (1984).

    CAS  ADS  Google Scholar 

  20. 20.

    Nishimura, N., Takiwaki, T. & Thielemann, F.-K. The r-process nucleosynthesis in the various jet-like explosions of magnetorotational core-collapse supernovae. Astrophys. J. 810, 109 (2015).

    ADS  Google Scholar 

  21. 21.

    Kobayashi, C. et al. Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006).

    CAS  ADS  Google Scholar 

  22. 22.

    Lattimer, J. M. & Schramm, D. N. Black-hole-neutron-star collisions. Astrophys. J. 192, L145–L147 (1974).

    ADS  Google Scholar 

  23. 23.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. 24.

    Wanajo, S. et al. Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. 789, L39 (2014).

    ADS  Google Scholar 

  25. 25.

    Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

    CAS  ADS  Google Scholar 

  26. 26.

    Bruenn, S. W. et al. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M stars. Astrophys. J. 818, 123 (2016).

    ADS  Google Scholar 

  27. 27.

    MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999).

    CAS  ADS  Google Scholar 

  28. 28.

    Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N. & Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413, 2031–2056 (2011).

    ADS  Google Scholar 

  29. 29.

    Dopita, M. et al. The Wide Field Spectrograph (WiFeS): performance and data reduction. Astrophys. Space Sci. 327, 245–257 (2010).

    ADS  Google Scholar 

  30. 30.

    Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    CAS  ADS  Google Scholar 

  31. 31.

    Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S. & Athey, A. E. MIKE: a double echelle spectrograph for the Magellan telescopes at Las Campanas Observatory. Proc. SPIE 4841, 1694–1704 (2003).

    ADS  Google Scholar 

  32. 32.

    Kelson, D. D. Optimal techniques in two-dimensional spectroscopy: background subtraction for the 21st century. Publ. Astron. Soc. Pacif. 115, 688–699 (2003).

    ADS  Google Scholar 

  33. 33.

    Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B. & Kotzlowski, H. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal. Proc. SPIE 4008, 534–545 (2000).

    ADS  Google Scholar 

  34. 34.

    Norris, J. et al. The most metal-poor stars. I. Discovery, data, and atmospheric parameters. Astrophys. J. 762, 25 (2013).

    ADS  Google Scholar 

  35. 35.

    Yong, D. et al. The most metal-poor stars. II. Chemical abundances of 190 metal-poor stars including 10 new stars with [Fe/H] ≤ −3.5. Astrophys. J. 762, 26 (2013).

    ADS  Google Scholar 

  36. 36.

    Gaia Collaboration. Gaia early data release 3: summary of the contents and survey properties. Astron. Astrophys, 469, A1 (2021).

    Google Scholar 

  37. 37.

    Yong, D. et al. A chemical signature from fast-rotating low-metallicity massive stars: ROA 276 in ω Centauri. Astrophys. J. 837, 176 (2017).

    ADS  Google Scholar 

  38. 38.

    Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).

    CAS  ADS  Google Scholar 

  39. 39.

    Sobeck, J. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175 (2011).

    ADS  Google Scholar 

  40. 40.

    Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. In Proc. IAU Symp. No. 210 Modelling of Stellar Atmospheres (eds Piskunov, N. et al.) poster A20 (2003).

  41. 41.

    Placco, V. et al. Carbon-enhanced metal-poor star frequencies in the Galaxy: corrections for the effect of evolutionary status on carbon abundances. Astrophys. J. 797, 21 (2014).

    CAS  ADS  Google Scholar 

  42. 42.

    Mackereth, J. T. & Bovy, J. Fast estimation of orbital parameters in Milky Way-like potentials. Publ. Astron. Soc. Pacif. 130, 114501 (2018).

    ADS  Google Scholar 

  43. 43.

    Cordoni, G. et al. Exploring the Galaxy’s halo and very metal-weak thick disk with SkyMapper and Gaia DR2. Mon. Not. R. Astron. Soc. 503, 2539–2561 (2021).

    ADS  Google Scholar 

  44. 44.

    Mösta, P. et al. Magnetorotational core-collapse supernovae in three dimensions. Astrophys. J. 785, L29 (2014).

    ADS  Google Scholar 

  45. 45.

    Kuroda, T., Arcones, A., Takiwaki, T. & Kotake, K. Magnetorotational explosion of a massive star supported by neutrino heating in general relativistic three-dimensional simulations. Astrophys. J. 896, 102 (2020).

    CAS  ADS  Google Scholar 

  46. 46.

    Obergaulinger, M. & Aloy, M.-A. Magnetorotational core collapse of possible GRB progenitors. III. Three-dimensional models. Mon. Not. R. Astron. Soc. 503, 4942–4963 (2021).

    ADS  Google Scholar 

  47. 47.

    Takiwaki, T., Kotake, K. & Sato, K. Special relativistic simulations of magnetically dominated jets in collapsing massive stars. Astrophys. J. 691, 1360 (2009).

    ADS  Google Scholar 

  48. 48.

    Kobayashi, C., Ishigaki, M. N., Tominaga, N. & Nomoto, K. The origin of low [α/Fe] ratios in extremely metal-poor stars. Astrophys. J. 785, L5 (2014).

    ADS  Google Scholar 

  49. 49.

    Reichert, M., Obergaulinger, M., Eichler, M., Aloy, M. A. & Arcones, A. Nucleosynthesis in magneto-rotational supernovae. Mon. Not. R. Astron. Soc. 501, 5733–5745 (2021).

    ADS  Google Scholar 

  50. 50.

    Placco, V. et al. The r-process alliance: the peculiar chemical abundance pattern of RAVE J183013.5−455510. Astrophys. J. 897, 78 (2020).

    CAS  ADS  Google Scholar 

  51. 51.

    Choplin, A., Tominaga, N. & Meyer, B. S. A strong neutron burst in jet-like supernovae of spinstars. Astron. Astrophys. 639, A126 (2020).

    CAS  ADS  Google Scholar 

  52. 52.

    Skinner, D. & Wise, J. H. Cradles of the first stars: self-shielding, halo masses, and multiplicity. Mon. Not. R. Astron. Soc. 492, 4386–4397 (2020).

    CAS  ADS  Google Scholar 

  53. 53.

    Mennekens, N. & Vanbeveren, D. Massive double compact object mergers: gravitational wave sources and r-process element production sites. Astron. Astrophys. 564, A134 (2014).

    ADS  Google Scholar 

  54. 54.

    Belczynski, K. et al. The origin of the first neutron star–neutron star merger. Astron. Astrophys. 615, A91 (2018).

    Google Scholar 

  55. 55.

    Vigna-Gómez, A. et al. On the formation history of Galactic double neutron stars. Mon. Not. R. Astron. Soc. 481, 4009–4029 (2018).

    ADS  Google Scholar 

  56. 56.

    van de Voort, F. et al. Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. Mon. Not. R. Astron. Soc. 494, 4867–4883 (2020).

    ADS  Google Scholar 

  57. 57.

    Goriely, S., Bauswein, A. & Janka, H.-T. r-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys. J. 738, L32 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile, and is based on observations collected at the European Southern Observatory under ESO programme DDT 2103.D-5062(A). This research was supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. C.K. acknowledges funding from the UK Science and Technology Facility Council (STFC) through grant ST/M000958/1 and ST/ R000905/1, and the Stromlo Distinguished Visitor Program at ANU. K.L. acknowledges funds from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 852977). A.F.M. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement number 797100. A.R.C. acknowledges Australian Research Council grant DE190100656.

Author information

Affiliations

Authors

Contributions

G.S.D.C., M.S.B., M.A., A.D.M., A.F.M., S.J.M. and T.N. were involved in the target selection and low-resolution spectroscopic observation campaigns. D.Y., G.S.D.C., A.C., A.F. and T.N. were involved in the high-resolution spectroscopic observations. K.L. and T.N. computed the non-LTE corrections. The manuscript was written by D.Y., C.K. and G.S.D.C., with contributions from all authors.

Corresponding author

Correspondence to D. Yong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Timothy Beers and Kim Venn for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spectrum of SMSS 2003−1142.

a, b, Spectrum synthesis fit to the 4,810-Å Zn i line (a) and the 4,129-Å Eu ii line (b). The observed spectra are shown as small circles, the best-fitting synthetic spectrum is shown as the solid black line and the yellow region indicates ±0.2 dex from the best fit.

Extended Data Fig. 2 Abundance ratios in halo stars.

af, Element to Fe ratios, [X/Fe], as a function of metallicity, [Fe/H], based on literature data20 (small crosses), for C (a), N (b), Zn (c), Ba (d), Eu (e) and Th (f). The lines are the Galactic chemical evolution model predictions for the solar neighbourhood20. SMSS 2003−1142 is shown as the large five-pointed star. The locations of well-studied r-process-rich stars (CS 22892−052, HD 122563, CS 29497−004, CS 31082−001 and RAVE J183013.5−455510) are highlighted by large symbols. Arrow indicate upper limits.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yong, D., Kobayashi, C., Da Costa, G.S. et al. r-Process elements from magnetorotational hypernovae. Nature 595, 223–226 (2021). https://doi.org/10.1038/s41586-021-03611-2

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links