Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy


Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility1,2 and excellent toughness2,3, but their room-temperature strengths are low1,2,3. Dislocation obstacles such as grain boundaries4, twin boundaries5, solute atoms6 and precipitates7,8,9 can increase strength. However, with few exceptions8,9,10,11, such obstacles tend to decrease ductility. Interestingly, precipitates can also hinder phase transformations12,13. Here, using a model, precipitate-strengthened, Fe–Ni–Al–Ti medium-entropy alloy, we demonstrate a strategy that combines these dual functions in a single alloy. The nanoprecipitates in our alloy, in addition to providing conventional strengthening of the matrix, also modulate its transformation from fcc-austenite to body-centred cubic (bcc) martensite, constraining it to remain as metastable fcc after quenching through the transformation temperature. During subsequent tensile testing, the matrix progressively transforms to bcc-martensite, enabling substantial increases in strength, work hardening and ductility. This use of nanoprecipitates exploits synergies between precipitation strengthening and transformation-induced plasticity, resulting in simultaneous enhancement of tensile strength and uniform elongation. Our findings demonstrate how synergistic deformation mechanisms can be deliberately activated, exactly when needed, by altering precipitate characteristics (such as size, spacing, and so on), along with the chemical driving force for phase transformation, to optimize strength and ductility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microstructures and tensile properties of FNAT-m-47h and FNAT-47h alloys.
Fig. 2: Microstructure analysis of the FNAT-47h and FNAT-4h alloys.
Fig. 3: Room-temperature mechanical properties and deformation mechanisms of FNAT alloys.
Fig. 4: Comparison of uniform elongation versus ultimate tensile strength at room temperature of the current MEAs (FNAT-47h, FNAT-8h, and FNAT-4h) with other HEAs and steels.

Similar content being viewed by others

Data availability

All figures have associated raw data, available on request from Y.Y.


  1. Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).

    Article  CAS  Google Scholar 

  2. Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kumar, K., Van Swygenhoven, H. & Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003).

    Article  ADS  CAS  Google Scholar 

  5. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Labusch, R. A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659–669 (1970).

    Article  ADS  Google Scholar 

  7. Gladman, T. Precipitation hardening in metals. Mater. Sci. Technol. 15, 30–36 (1999).

    Article  CAS  Google Scholar 

  8. Jiang, S. et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. He, B. et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science 357, 1029–1032 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. La Roca, P., Baruj, A., Sobrero, C. E., Malarria, J. A. & Sade, M. Nanoprecipitation effects on phase stability of Fe-Mn-Al-Ni alloys. J. Alloys Compd. 708, 422–427 (2017).

    Article  Google Scholar 

  13. Luo, H., Shan, F., Huo, Y. & Wang, Y. Effect of precipitates on phase transformation behavior of Ti-49 at.% Ni film. Thin Solid Films 339, 305–308 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Kaufman, L. & Cohen, M. The martensitic transformation in the iron-nickel system. JOM 8, 1393–1401 (1956).

    Article  ADS  CAS  Google Scholar 

  15. Liang, Y.-J. et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 9, 4063 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Raabe, D., Ponge, D., Dmitrieva, O. & Sander, B. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scr. Mater. 60, 1141–1144 (2009).

    Article  CAS  Google Scholar 

  17. Nishiyama, Z. X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic. Sci. Rep. Tohoku Univ. 23, 637 (1934).

    CAS  Google Scholar 

  18. Fisher, J., Hollomon, J. & Turnbull, D. Kinetics of the austenite → martensite transformation. Metals Trans. 185, 691–700 (1949).

    Google Scholar 

  19. Jimenez-Melero, E. et al. Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr. Mater. 56, 421–424 (2007).

    Article  CAS  Google Scholar 

  20. Yang, H.-S. & Bhadeshia, H. Austenite grain size and the martensite-start temperature. Scr. Mater. 60, 493–495 (2009).

    Article  CAS  Google Scholar 

  21. Jin, S., Morris, J., Chen, Y., Thomas, G. & Jaffee, R. An investigation of transformation strengthening in precipitation-hardened Fe-Ni austenite. Metall. Trans. A 9, 1625–1633 (1978).

    Article  Google Scholar 

  22. Wang, T. et al. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Sci. Rep. 11, 1–10 (2021).

    CAS  Google Scholar 

  23. Kaufman, L. & Bernstein, H. Computer Calculation of Phase Diagrams. With Special Reference to Refractory Metals (Academic Press, 1970).

  24. Cao, W. et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33, 328–342 (2009).

    Article  CAS  Google Scholar 

  25. Yeh, J. W., Chen, Y. L., Lin, S. J. & Chen, S. K. in Materials Science Forum Vol. 560 (eds Balmori-Ramirez, H. et al.) 1–9 (Trans Tech Publ, 2007).

  26. Cacciamani, G. et al. Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics 14, 1312–1325 (2006).

    Article  CAS  Google Scholar 

  27. Borgenstam, A. & Hillert, M. Massive transformation in the Fe–Ni system. Acta Mater. 48, 2765–2775 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Nishiyama, Z. Martensitic Transformation (Elsevier, 2012).

  29. Ardell, A. J. Precipitation hardening. Metall. Trans. A 16, 2131–2165 (1985).

    Article  Google Scholar 

  30. Gorbatov, O. I. et al. Effect of composition on antiphase boundary energy in Ni3Al-based alloys: ab initio calculations. Phys. Rev. B 93, 224106 (2016).

    Article  ADS  Google Scholar 

  31. Rosenberg, J. & Piehler, H. Calculation of the Taylor factor and lattice rotations for bcc metals deforming by pencil glide. Metall. Trans. 2, 257–259 (1971).

    Article  CAS  Google Scholar 

  32. Zhang, M., Li, L., Fu, R., Krizan, D. & De Cooman, B. Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels. Mater. Sci. Eng. A 438–440, 296–299 (2006).

    Article  Google Scholar 

  33. Zhao, J.-l., Yan, X., Wen, S. & Lin, L. Microstructure and mechanical properties of high manganese TRIP steel. J. Iron Steel Res. Int. 19, 57–62 (2012).

    Article  CAS  Google Scholar 

  34. Bouaziz, O., Zurob, H. & Huang, M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 84, 937–947 (2013).

    CAS  Google Scholar 

  35. Boyer, H. E. Atlas of Stress–Strain Curves (ASM International, 1987).

  36. Morris, J., Jr. Maraging steels: Making steel strong and cheap. Nat. Mater. 16, 787 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. García-Mateo, C. & Caballero, F. G. The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater. Trans. 46, 1839–1846 (2005).

    Article  Google Scholar 

  38. Kim, S.-H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. De Moor, E., Speer, J. G., Matlock, D. K., Kwak, J.-H. & Lee, S.-B. Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels. ISIJ Int. 51, 137–144 (2011).

    Article  Google Scholar 

  40. Dong, X., Shen, Y., Yin, T., Misra, R. & Lin, G. Strengthening a medium-carbon steel to 2800 MPa by tailoring nanosized precipitates and the phase ratio. Mater. Sci. Eng. A 759, 725–735 (2019).

    Article  CAS  Google Scholar 

  41. Bouaziz, O., Barbier, D., Cugy, P. & Petigand, G. Effect of process parameters on a metallurgical route providing nano‐structured single phase steel with high work-hardening. Adv. Eng. Mater. 14, 49–51 (2012).

    Article  CAS  Google Scholar 

  42. Wang, H., Tao, N. & Lu, K. Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 60, 4027–4040 (2012).

    Article  ADS  CAS  Google Scholar 

  43. Otto, F. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013).

    Article  ADS  CAS  Google Scholar 

  44. Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

    Article  CAS  Google Scholar 

  45. He, J. et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016).

    Article  ADS  CAS  Google Scholar 

  46. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Wignall, G. D. et al. The 40 m general purpose small-angle neutron scattering instrument at Oak Ridge National Laboratory. J. Appl. Cryst. 45, 990–998 (2012).

    Article  CAS  Google Scholar 

  48. Kotlarchyk, M. & Chen, S. H. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J. Chem. Phys. 79, 2461–2469 (1983).

    Article  ADS  CAS  Google Scholar 

  49. Thompson, K. et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Soven, P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).

    Article  ADS  CAS  Google Scholar 

  51. Taylor, D. Vibrational properties of imperfect crystals with large defect concentrations. Phys. Rev. 156, 1017 (1967).

    Article  ADS  CAS  Google Scholar 

  52. Stocks, G., Temmerman, W. & Gyorffy, B. Complete solution of the Korringa–Kohn–Rostoker coherent-potential-approximation equations: Cu–Ni alloys. Phys. Rev. Lett. 41, 339 (1978).

    Article  ADS  CAS  Google Scholar 

  53. Ebert, H., Koedderitzsch, D. & Minar, J. Calculating condensed matter properties using the KKR–Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

    Article  ADS  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  ADS  CAS  Google Scholar 

  56. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  57. Liechtenstein, A. I., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    Article  ADS  CAS  Google Scholar 

  58. Vaks, V. & Zeĭn, N. Theory of phase transitions in solid solutions. J. Exp. Theor. Phys. 40, 537 (1975).

    ADS  Google Scholar 

  59. Vaks, V. & Samolyuk, G. On accuracy of different cluster models used in describing ordering phase transitions in fcc alloys. J. Exp. Theor. Phys. 88, 89–100 (1999).

    Article  ADS  CAS  Google Scholar 

  60. Chuang, Y.-Y., Chang, Y. A., Schmid, R. & Lin, J.-C. Magnetic contributions to the thermodynamic functions of alloys and the phase equilibria of Fe–Ni system below 1200 K. Metall. Trans. A 17, 1361–1372 (1986).

    Article  Google Scholar 

  61. Edwards, D. The paramagnetic state of itinerant electron systems with local magnetic moments. I. Static properties. J. Phys. F Met. Phys. 12, 1789 (1982).

    Article  ADS  CAS  Google Scholar 

  62. Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).

    Article  ADS  CAS  Google Scholar 

  63. Ramer, N. J. & Rappe, A. M. Virtual-crystal approximation that works: locating a compositional phase boundary in Pb(Zr1−xTix)O3. Phys. Rev. B 62, R743 (2000).

    Article  ADS  CAS  Google Scholar 

  64. Kurdjumov, G. & Sachs, G. Crystallographic orientation relationship between α-and γ-Fe. Ann. Phys. 64, 325 (1930).

    Google Scholar 

  65. American Iron and Steel Institute. High-Temperature Characteristics of Stainless Steel A Designer’s Handbook Report No. 9004 (Nickel Development Institute, 1979);

  66. Warlimont, H. & Martienssen, W. Springer Handbook of Materials Data (Springer, 2018).

Download references


This research was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (testing and analysis of mechanical properties and responsible deformation mechanisms, TEM characterization of the FNAT-4h alloy, and writing of the manuscript) and by the Laboratory Directed Research and Development programme of Oak Ridge National Laboratory (ORNL) (microstructural characterization and first-principles calculations), managed by UT-Battelle, LLC, for the US Department of Energy. Y.Y. acknowledges CompuTherm for providing the phase diagram calculation software Pandat. Resources at ORNL’s High Flux Isotope Reactor for small-angle neutron scattering, Spallation Neutron Source for neutron diffraction, and Center for Nanophase Materials Sciences for atom probe tomography were used in this study, which are US DOE Office of Science User Facilities.

Author information

Authors and Affiliations



Y.Y. conceived the study, designed the alloy and supervised the project. T.C., A.R.L., A.B. and L.T. performed the TEM and STEM analyses. L.T. performed EBSD analysis. K.A. performed neutron diffraction and phase analysis. Y.W. performed and analysed tensile tests with DIC. J.D.P. performed the APT analysis. G.D.S. performed the first-principles calculations. K.L. performed the SANS analysis. Y.Y. and E.P.G. analysed and interpreted the mechanical properties and deformation mechanisms and wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Ying Yang or Easo P. George.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Temperature dependence of phase equilibria and composition calculated using the CALPHAD approach, and the free energy from first-principles calculations.

a, Mole fraction of equilibrium phases in FNAT. b, Compositions of elements (at%) in the fcc phase. c, Free energy of fcc and bcc phases that have the same composition (Fe-23Ni-3.5Al-0.5Ti, at%) as the matrix of FNAT.

Extended Data Fig. 2 Information for estimating yield strength of FNAT-47h.

a, Room-temperature tensile stress–strain curve of FNAT after solutionizing at 1,100 °C and water quenching showing yield strength of ~325 MPa. b, STEM bright-field image showing dislocations cutting particles (yellow arrows) in the matrix of a plastically deformed FNAT sample. c, Corresponding HAADF image of b.

Extended Data Fig. 3 TEM/STEM analyses of interface between precipitate and matrix of the FNAT-47h alloy.

a, b, HAADF lattice images before deformation (from tab section of tensile specimen). a, A lattice image of L12/bcc interface displays the Nishiyama–Wasserman orientation \({(1\bar{1}1)}_{{{\rm{L1}}}_{2}}\parallel {(0\bar{1}1)}_{{\rm{bcc}}}\) and \({[110]}_{{{\rm{L1}}}_{2}}\parallel {[100]}_{{\rm{bcc}}}\), where the interplanar spacings, \(d{(1\bar{1}1)}_{{{\rm{L1}}}_{2}}\) = 0.2072 nm and \(d{(0\bar{1}1)}_{{\rm{bcc}}}\) = 0.2027 nm, result in a mismatch of ~2.2% and a semi-coherent interface. b, A lattice image of L12/fcc interface region exhibits full cube-on-cube lattice coherency with \({(\bar{1}11)}_{{{\rm{L1}}}_{2}}\parallel {(\bar{1}11)}_{{\rm{fcc}}}\) and \({[110]}_{{{\rm{L1}}}_{2}}\parallel {[110]}_{{\rm{fcc}}}\), where the interplanar spacings, \(d{(1\bar{1}1)}_{{{\rm{L1}}}_{2}}\) = 0.2072 nm and \(d{(1\bar{1}1)}_{{\rm{fcc}}}\) = 0.2074 nm, result in a small mismatch of ~0.1%. ce, TEM and HAADF lattice images after deformation (from gauge section of tensile specimen). c, Dark-field TEM image showing L12 precipitates, some containing streaks (marked by arrowheads), embedded in a deformation-induced bcc grain after deformation. d, HAADF lattice image showing a stacking fault with a Burgers vector of \(\tfrac{1}{6} < 112 > \) formed in one of the L12 precipitates containing streaks. Labels A, B, C in the inset denote alternating {111} planes in the L12 structure. e, HAADF lattice image showing semi-coherent L12/bcc interface with the Kurdjumov–Sachs orientation relationship64, namely, \({(\bar{1}11)}_{{{\rm{L1}}}_{2}}\parallel {(\bar{1}10)}_{{\rm{bcc}}}\) and \({[110]}_{{{\rm{L1}}}_{2}}\parallel {[111]}_{{\rm{bcc}}}\) and a lattice mismatch of ~2.2%. The slip-transfer mechanism in ce is common when dislocations move from fcc matrix to L12 precipitate, but is rarely seen when the matrix is bcc.

Extended Data Fig. 4 STEM HAADF image, corresponding FFT diffractogram and inverse FFT image of the as-quenched FNAT-4h alloy sample tilted to [110] zone axis condition.

a, HR STEM image. b, FFT diffractogram. c, the inverse FFT generated using the blue-circled 'extra spots' in b. The diffuse spatial distribution of the bright features in c indicates that the extra spots in b are caused by small variable local misorientations due to local internal strains as opposed to any nano-domains of a different matrix phase.

Extended Data Fig. 5 Ultimate tensile strength versus Ni or (Ni + Co) content at room temperature and 700 °C.

Open symbols, room temperature (RT); filled symbols, 700 °C. The FNAT alloy is compared with different materials whose data sources are Fe-based heat-resistant alloys including 410, 430, 302, 309, 310, 316, 321, 34765 A286 and Incoloy 80066; Ni-based super alloys66 including Inconel 706, Inconel 718, Nimonic 80A, PE 16, Inconel 625, Inconel 600, Hastelloy S, Hastelloy X, Udimet 630; and Ni–Co-based super alloys66 including Incoloy 909, Nimonic 90, Nimonic 115, Waspaloy, Udimet 720, Udimet 500, Rene 41, Rene 95, Astroloy, Inconel 617 and Haynes 230.

Extended Data Fig. 6 Textures of FNAT-47h and FNAT-m-47h after hot-rolling and annealing.

a, b, EBSD pole figures for FNAT-47h, c, d, EBSD pole figures for FNAT-m-47h. The normal direction (ND) in each case is at the centre of the circle and is either 001 or 111 as marked. TD in ad refers to the transverse direction. e, Neutron diffraction spectra of FNAT-47h along the rolling direction (RD) and the normal direction (ND). Note that we have shifted the RD and ND spectra horizontally with respect to each other to facilitate comparison (otherwise the peaks would overlap). Both EBSD (a, b) and ND (e) results show that FNAT-47h has negligible texture.

Extended Data Fig. 7 Fracture analysis of tensile-tested FNAT-m-47h and FNAT-47h alloys.

a, FNAT-m-47h: fractograph and stress–strain curve showing considerable necking before fracture, and DIC strain maps showing strain localization in the region where fracture eventually occurs. b, FNAT-47h: fractograph and stress–strain curve showing minimal necking before fracture, and DIC strain maps showing relatively diffuse strain distribution throughout the gauge section with no evidence of localization near the fracture plane.

Extended Data Table 1 Precipitate parameters calculated from different fits to APT data
Extended Data Table 2 Parameters of precipitates in deformed and undeformed bcc and fcc grains

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, T., Tan, L. et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 595, 245–249 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing