Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-time optimal quantum control of mechanical motion at room temperature

Abstract

The ability to accurately control the dynamics of physical systems by measurement and feedback is a pillar of modern engineering1. Today, the increasing demand for applied quantum technologies requires adaptation of this level of control to individual quantum systems2,3. Achieving this in an optimal way is a challenging task that relies on both quantum-limited measurements and specifically tailored algorithms for state estimation and feedback4. Successful implementations thus far include experiments on the level of optical and atomic systems5,6,7. Here we demonstrate real-time optimal control of the quantum trajectory8 of an optically trapped nanoparticle. We combine confocal position sensing close to the Heisenberg limit with optimal state estimation via Kalman filtering to track the particle motion in phase space in real time with a position uncertainty of 1.3 times the zero-point fluctuation. Optimal feedback allows us to stabilize the quantum harmonic oscillator to a mean occupation of 0.56 ± 0.02 quanta, realizing quantum ground-state cooling from room temperature. Our work establishes quantum Kalman filtering as a method to achieve quantum control of mechanical motion, with potential implications for sensing on all scales. In combination with levitation, this paves the way to full-scale control over the wavepacket dynamics of solid-state macroscopic quantum objects in linear and nonlinear systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Kalman filter and verification.
Fig. 3: Quantum optimal control.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Åström, K. J. & Wittenmark, B. Computer-controlled Systems: Theory and Design (Courier Corporation, 2013).

  2. 2.

    Geremia, J., Stockton, J. K., Doherty, A. C. & Mabuchi, H. Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. Phys. Rev. Lett. 91, 250801 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Glaser, S. J. et al. Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015).

    ADS  Google Scholar 

  4. 4.

    Wieseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, 2010).

  5. 5.

    Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yonezawa, H. et al. Quantum-enhanced optical-phase tracking. Science 337, 1514–1517 (2012).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  7. 7.

    Jiménez-Martínez, R. et al. Signal tracking beyond the time resolution of an atomic sensor by Kalman filtering. Phys. Rev. Lett. 120, 040503 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Carmichael, H. An Open Systems Approach to Quantum Optics (Springer, 1993).

  9. 9.

    Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).

    MathSciNet  Google Scholar 

  10. 10.

    Kalman, R. E. et al. Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 5, 102–119 (1960).

    MathSciNet  Google Scholar 

  11. 11.

    Sittig, D. F. & Cheung, K.-H. A parallel implementation of a multi-state Kalman filtering algorithm to detect ECG arrhythmias. Int. J. Clin. Monit. Com. 9, 13–22 (1992).

    CAS  Google Scholar 

  12. 12.

    Bar-Shalom, Y., Li, X. R. & Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software (Wiley, 2004).

  13. 13.

    Ruppert, M. G., Karvinen, K. S., Wiggins, S. L. & Moheimani, S. O. R. A Kalman filter for amplitude estimation in high-speed dynamic mode atomic force microscopy. IEEE Trans. Control Syst. Technol. 24, 276–284 (2016).

    Google Scholar 

  14. 14.

    Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    ADS  CAS  Google Scholar 

  15. 15.

    Rossi, M., Mason, D., Chen, J. & Schliesser, A. Observing and verifying the quantum trajectory of a mechanical resonator. Phys. Rev. Lett. 123, 163601 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Belavkin, V. P. Quantum filtering of Markov signals with white quantum noise. In Quantum Communications and Measurement (eds Belavkin, V. P. et al.) 381–391 (1995).

  17. 17.

    Iwasawa, K. et al. Quantum-limited mirror-motion estimation. Phys. Rev. Lett. 111, 163602 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wieczorek, W. et al. Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Setter, A., Toroš, M., Ralph, J. F. & Ulbricht, H. Real-time Kalman filter: cooling of an optically levitated nanoparticle. Phys. Rev. A 97, 033822 (2018).

    ADS  CAS  Google Scholar 

  20. 20.

    Liao, J. et al. FPGA implementation of a Kalman-based motion estimator for levitated nanoparticles. IEEE Trans. Instrum. Meas. 68, 2374–2386 (2019).

    Google Scholar 

  21. 21.

    Sudhir, V. et al. Appearance and disappearance of quantum correlations in measurement-based feedback control of a mechanical oscillator. Phys. Rev. X 7, 011001 (2017).

    Google Scholar 

  22. 22.

    Tebbenjohanns, F., Frimmer, M., Jain, V., Windey, D. & Novotny, L. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett. 124, 013603 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kamba, M., Kiuchi, H., Yotsuya, T. & Aikawa, K. Recoil-limited feedback cooling of single nanoparticles near the ground state in an optical lattice. Phys. Rev. A 103, L051701 (2021).

    ADS  CAS  Google Scholar 

  24. 24.

    Windey, D. et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett. 122, 123601 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    de los Ríos Sommer, A., Meyer, N. & Quidant, R. Strong optomechanical coupling at room temperature by coherent scattering. Nat. Commun. 12, 276 (2021).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gieseler, J., Novotny, L. & Quidant, R. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806–810 (2013).

    CAS  Google Scholar 

  29. 29.

    Frimmer, M. et al. Controlling the net charge on a nanoparticle optically levitated in vacuum. Phys. Rev. A 95, 061801 (2017).

    ADS  Google Scholar 

  30. 30.

    Tebbenjohanns, F., Frimmer, M. & Novotny, L. Optimal position detection of a dipolar scatterer in a focused field. Phys. Rev. A 100, 043821 (2019).

    ADS  CAS  Google Scholar 

  31. 31.

    Seberson, T. & Robicheaux, F. Distribution of laser shot-noise energy delivered to a levitated nanoparticle. Phys. Rev. A 102, 033505 (2020).

    ADS  CAS  Google Scholar 

  32. 32.

    Vamivakas, A. N. et al. Phase-sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system. Opt. Lett. 32, 970–972 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  34. 34.

    Abbott, B. et al. Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11, 073032 (2009).

    Google Scholar 

  35. 35.

    Bushev, P. et al. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion. Phys. Rev. Lett. 110, 133602 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Doherty, A. C. & Jacobs, K. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60, 2700–2711 (1999).

    ADS  CAS  Google Scholar 

  37. 37.

    Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Braginskiĭ, V. B. & Vorontsov, Y. I. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Sov. Phys. Uspekhi 17, 644–650 (1975).

    ADS  Google Scholar 

  40. 40.

    Ranjit, G., Cunningham, M., Casey, K. & Geraci, A. A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).

    ADS  Google Scholar 

  41. 41.

    Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).

    ADS  CAS  Google Scholar 

  42. 42.

    Moore, D. C. & Geraci, A. A. Searching for new physics using optically levitated sensors. Quant. Sci. Tech. 6, 014008 (2021).

    Google Scholar 

  43. 43.

    Monteiro, F. et al. Search for composite dark matter with optically levitated sensors. Phys. Rev. Lett. 125, 181102 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quant. Sci. Tech. 6, 024002 (2020).

    Google Scholar 

  45. 45.

    Leggett, A. J. Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415–R451 (2002).

    ADS  CAS  Google Scholar 

  46. 46.

    Chen, Y. Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. J. Phys. At. Mol. Opt. Phys. 46, 104001 (2013).

    ADS  CAS  Google Scholar 

  47. 47.

    Genoni, M. G., Zhang, J., Millen, J., Barker, P. F. & Serafini, A. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements. New J. Phys. 17, 073019 (2015).

    ADS  Google Scholar 

  48. 48.

    Ralph, J. F. et al. Dynamical model selection near the quantum-classical boundary. Phys. Rev. A 98, 010102 (2018).

    ADS  CAS  Google Scholar 

  49. 49.

    Rakhubovsky, A. A. & Filip, R. Stroboscopic high-order nonlinearity in quantum optomechanics. Preprint at https://arXiv.org/abs/1904.00773v1 (2019).

Download references

Acknowledgements

We thank J. M. Leitão for his introduction to optimal control, and P. Vezio, H. Hepach and T. Westphal for discussions and their help in the laboratory. L.M. thanks A. Rauschenbeutel for the discussion inspiring the confocal detection scheme. This project was supported by the European Research Council (grant agreement no. 649008, ERC CoG QLev4G), by the ERA-NET programme QuantERA under grants QuaSeRT (contract no. 11299191) and TheBlinQC (project no. 731473) (via the EC, the Austrian ministries BMDW and BMBWF and research promotion agency FFG), by the European Union’s Horizon 2020 research and innovation programme under grant no. 863132 (iQLev), and by the Austrian Science Fund (FWF, START Project TheLO, Y 952-N36). L.M. is supported by the Vienna Doctoral School of Physics (VDS-P) and by the FWF under project W1210 (CoQuS).

Author information

Affiliations

Authors

Contributions

L.M. designed and built the experiment, P.R. designed and programmed the filter and controller. L.M. and C.B. performed the measurements. L.M., P.R. and C.B. analysed the data. The work was supervised by A.K. and M.A. All authors discussed the results and contributed to writing the paper.

Corresponding authors

Correspondence to Lorenzo Magrini or Markus Aspelmeyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1 – 13, Supplementary Equations 1 – 104 and Supplementary References.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magrini, L., Rosenzweig, P., Bach, C. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373–377 (2021). https://doi.org/10.1038/s41586-021-03602-3

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing