Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interface nano-optics with van der Waals polaritons

Abstract

Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials—known as van der Waals polaritons—have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light–matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics—such as refractive optics, meta-optics and moiré engineering—for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications—including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Interface optics with vdW polaritons.
Fig. 2: Refractive optics based on planar polaritonic elements.
Fig. 3: Meta-optics based on polaritonic vdW nanostructures and heterostructures.
Fig. 4: Interlayer effects and moiré engineering for extreme polariton dispersion.
Fig. 5: Potential applications and future developments.

References

  1. 1.

    Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). Refs.1,2 are two comprehensive reviews of early-stage research on polaritons in natural vdW materials—including monolayers, thin slabs and hybrid heterostructures—summarizing the unique physical features of different types of vdW polariton.

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Dai, Z. et al. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 120, 6197–6246 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10, 244–247 (2016).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Yao, B. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photonics 12, 22–28 (2018).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Phare, C. T., Lee, Y.-H. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Ansell, D. et al. Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6, 8846 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Chakraborty, S. et al. Gain modulation by graphene plasmons in aperiodic lattice lasers. Science 351, 246–248 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Kurman, Y. et al. Control of semiconductor emitter frequency by increasing polariton momenta. Nat. Photonics 12, 423–429 (2018).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotechnol. 11, 9–15 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394–399 (2013).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). Refs.27,28 independently demonstrated real-space imaging of surface plasmon polaritons in graphene.

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  30. 30.

    Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674 (2015).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Nikitin, A. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photonics 10, 239–243 (2016).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  33. 33.

    Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  34. 34.

    Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. 37.

    Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  38. 38.

    Woessner, A. et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. npj 2D Mater. Appl. 1, 25 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  40. 40.

    Ambrosio, A. et al. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 11, 8741–8746 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Dong, W. et al. Broad-spectral-range sustainability and controllable excitation of hyperbolic phonon polaritons in α-MoO3. Adv. Mater. 32, 2002014 (2020).

    CAS  Article  Google Scholar 

  45. 45.

    Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Woessner, A. et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photonics 11, 421–424 (2017).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zhang, Q. et al. Negative refraction inspired polariton lens in van der Waals lateral heterojunctions. Appl. Phys. Lett. 114, 221101 (2019).

    ADS  Article  CAS  Google Scholar 

  50. 50.

    Hu, F. et al. Imaging the localized plasmon resonance modes in graphene nanoribbons. Nano Lett. 17, 5423–5428 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Dai, Z. et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun. 11, 6086 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Dolado, I. et al. Nanoscale guiding of infrared light with hyperbolic volume and surface polaritons in van der Waals material ribbons. Adv. Mater. 32, 1906530 (2020).

    CAS  Article  Google Scholar 

  53. 53.

    Kloppstech, K. et al. Giant heat transfer in the crossover regime between conduction and radiation. Nat. Commun. 8, 14475 (2017).

    CAS  PubMed Central  Article  Google Scholar 

  54. 54.

    Dias, E. J. C., Yu, R. & García de Abajo, F. J. Thermal manipulation of plasmons in atomically thin films. Light Sci. Appl. 9, 87 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Gomez-Diaz, J. S., Tymchenko, M. & Alù, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  56. 56.

    Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Cortes, C. L. & Jacob, Z. Super-Coulombic atom–atom interactions in hyperbolic media. Nat. Commun. 8, 14144 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Alfaro-Mozaz, F. J. et al. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat. Commun. 10, 42 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Li, P. et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    ADS  CAS  Article  Google Scholar 

  69. 69.

    Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  70. 70.

    Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Jiang, L. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–208 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Hu, F. et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys. Rev. Lett. 119, 247402 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Ni, G. X. et al. Soliton superlattices in twisted hexagonal boron nitride. Nat. Commun. 10, 4360 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Chen, X. et al. Moiré engineering of electronic phenomena in correlated oxides. Nat. Phys. 16, 631–635 (2020).

    CAS  Article  Google Scholar 

  77. 77.

    Sunku, S. S. et al. Nano-photocurrent mapping of local electronic structure in twisted bilayer graphene. Nano Lett. 20, 2958–2964 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Lewandowski, C. & Levitov, L. Intrinsically undamped plasmon modes in narrow electron bands. Proc. Natl Acad. Sci. USA 116, 20869–20874 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Khaliji, K., Stauber, T. & Low, T. Plasmons and screening in finite-bandwidth two-dimensional electron gas. Phys. Rev. B 102, 125408 (2020).

    ADS  CAS  Article  Google Scholar 

  81. 81.

    Brey, L., Stauber, T., Slipchenko, T. & Martín-Moreno, L. Plasmonic Dirac cone in twisted bilayer graphene. Phys. Rev. Lett. 125, 256804 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Woods, C. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Article  Google Scholar 

  83. 83.

    Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS  Article  Google Scholar 

  84. 84.

    Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Kotov, O. & Lozovik, Y. E. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B 100, 165424 (2019).

    ADS  CAS  Article  Google Scholar 

  86. 86.

    Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  90. 90.

    Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    ADS  MathSciNet  CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005).

    ADS  Article  CAS  Google Scholar 

  92. 92.

    Jin, D. et al. Infrared topological plasmons in graphene. Phys. Rev. Lett. 118, 245301 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    MathSciNet  CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Kumar, A. et al. Chiral plasmon in gapped Dirac systems. Phys. Rev. B 93, 041413 (2016).

    ADS  Article  CAS  Google Scholar 

  95. 95.

    Song, J. C. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Tao, J., Wu, L. & Zheng, G. Graphene surface-polariton in-plane Cherenkov radiation. Carbon 133, 249–253 (2018).

    CAS  Article  Google Scholar 

  98. 98.

    Tao, J., Wu, L., Zheng, G. & Yu, S. Cherenkov polaritonic radiation in a natural hyperbolic material. Carbon 150, 136–141 (2019).

    CAS  Article  Google Scholar 

  99. 99.

    Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  100. 100.

    Lin, X. et al. Splashing transients of 2D plasmons launched by swift electrons. Sci. Adv. 3, e1601192 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Shentcis, M. et al. Tunable free-electron X-ray radiation from van der Waals materials. Nat. Photonics 14, 686–692 (2020).

    ADS  CAS  Article  Google Scholar 

  102. 102.

    Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 10, 46–52 (2016).

    ADS  CAS  Article  Google Scholar 

  103. 103.

    Rosolen, G. et al. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl. 7, 64 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. 104.

    Li, Y., Ferreyra, P., Swan, A. K. & Paiella, R. Current-driven terahertz light emission from graphene plasmonic oscillations. ACS Photonics 6, 2562–2569 (2019).

    CAS  Article  Google Scholar 

  105. 105.

    Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Farmer, D. B., Avouris, P., Li, Y., Heinz, T. F. & Han, S.-J. Ultrasensitive plasmonic detection of molecules with graphene. ACS Photonics 3, 553–557 (2016).

    CAS  Article  Google Scholar 

  107. 107.

    Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Tamagnone, M. et al. High quality factor polariton resonators using van der Waals materials. Preprint at https://arxiv.org/abs/1905.02177 (2019).

  109. 109.

    Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Lee, I.-H. et al. Anisotropic acoustic plasmons in black phosphorus. ACS Photonics 5, 2208–2216 (2018).

    CAS  Article  Google Scholar 

  111. 111.

    Yuan, Z. et al. Extremely-confined acoustic phonon polaritons in monolayer-hBN/metal heterostructures for strong light-matter interactions. ACS Photonics 7, 2610–2617 (2020).

    CAS  Article  Google Scholar 

  112. 112.

    Francescato, Y., Giannini, V., Yang, J., Huang, M. & Maier, S. A. Graphene sandwiches as a platform for broadband molecular spectroscopy. ACS Photonics 1, 437–443 (2014).

    CAS  Article  Google Scholar 

  113. 113.

    Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics 15, 197–202 (2021).

    ADS  CAS  Article  Google Scholar 

  114. 114.

    Lin, X. et al. Chiral plasmons with twisted atomic bilayers. Phys. Rev. Lett. 125, 077401 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Stauber, T., Low, T. & Gómez-Santos, G. Plasmon-enhanced near-field chirality in twisted van der Waals heterostructures. Nano Lett. 20, 8711–8718 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  118. 118.

    Nemilentsau, A., Stauber, T., Gómez-Santos, G., Luskin, M. & Low, T. Switchable and unidirectional plasmonic beacons in hyperbolic two-dimensional materials. Phys. Rev. B 99, 201405 (2019).

    ADS  CAS  Article  Google Scholar 

  119. 119.

    Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Klein, M. et al. 2D semiconductor nonlinear plasmonic modulators. Nat. Commun. 10, 3264 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Guerrero-Becerra, K. A., Tomadin, A. & Polini, M. Electrical plasmon injection in double-layer graphene heterostructures. Phys. Rev. B 100, 125434 (2019).

    ADS  CAS  Article  Google Scholar 

  122. 122.

    Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Weiliang, M. G. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362-366 (2021).This reference reports the first observation of ghost polaritons and the first real-space mapping of the hyperbolic plaritons in bulk anisotropic crystals, which demonstrates approximately 20-μm long-range propagation at room temperature and large-scale production readiness for polaritonic on-chip devices.

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photonics 11, 356–360 (2017).

    ADS  CAS  Article  Google Scholar 

  127. 127.

    Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  128. 128.

    Nemilentsau, A., Low, T. & Hanson, G. Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett. 116, 066804 (2016).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  129. 129.

    Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article  CAS  Google Scholar 

  131. 131.

    Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near- and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article  CAS  Google Scholar 

  132. 132.

    Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  133. 133.

    Álvarez-Pérez, G., Voronin, K. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    ADS  Article  Google Scholar 

  134. 134.

    Sun, F. et al. Polariton waveguide modes in two-dimensional van der Waals crystals: an analytical model and correlative nano-imaging. Nanoscale 13, 4845–4854 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Research Foundation, Prime Minister’s Office, Singapore under Competitive Research Program Award NRF-CRP22-2019-0006; the Vannevar Bush Faculty Fellowship program; the Simons Foundation; and the Air Force Office of Scientific Research MURI program. R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant no. IT1164-19). P.L. acknowledges the National Natural Science Foundation of China (grant no. 62075070). G.H. acknowledges the support from A*STAR AME Young Individual Research Grants (YIRG, No. A2084c0172).

Author information

Affiliations

Authors

Contributions

Q.Z., G.H. and W.M. wrote the manuscript; P.L., A.K. and R.H. contributed to the discussion of content; and A.A. and C.-W.Q. supervised the project. All authors contributed to the editing of the paper.

Corresponding authors

Correspondence to Andrea Alù or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Tony Low and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Hu, G., Ma, W. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021). https://doi.org/10.1038/s41586-021-03581-5

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing