Abstract
A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform1,2,3,4. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties. We benchmark the underlying method by reconstructing the single-particle band structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors, and measure the energy eigenvalues of this wire with an error of approximately 0.01 rad, whereas typical energy scales are of the order of 1 rad. Insight into the fidelity of this algorithm is gained by highlighting the robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 10−4 rad. We also synthesize magnetic flux and disordered local potentials, which are two key tenets of a condensed-matter system. When sweeping the magnetic flux we observe avoided level crossings in the spectrum, providing a detailed fingerprint of the spatial distribution of local disorder. By combining these methods we reconstruct electronic properties of the eigenstates, observing persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation5,6 and paves the way to study new quantum materials with superconducting qubits.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Benchmarking universal quantum gates via channel spectrum
Nature Communications Open Access 21 September 2023
-
Accelerated quantum Monte Carlo with probabilistic computers
Communications Physics Open Access 27 April 2023
-
Observing and braiding topological Majorana modes on programmable quantum simulators
Nature Communications Open Access 21 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data presented in this study can be found in the Dryad repository located at https://doi.org/10.5061/dryad.4f4qrfj9x.
Code availability
The Python code for processing the data presented in this study can be found in the Dryad repository located at https://doi.org/10.5061/dryad.4f4qrfj9x.
References
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).
Georgescu, I., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).
Polkovnikov, A., Sengupta, K., Silva, A. & Vengalatorre, M. Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863 (2011).
Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268–279 (2020).
Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).
Jiang, H. C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t'. Science 365, 1424–1428 (2019).
Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).
Dolev, M., Heiblum, M., Umansky, V., Stern, A. & Mahalu, D. Observation of a quarter of an electron charge at the v = 5/2 quantum Hall state. Nature 452, 829–834 (2008).
Willett, R. et al. Interference measurements of non-abelian e/4 & abelian e/2 quasiparticle braiding. Preprint at https://arxiv.org/abs/1905.10248 (2019).
Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).
Neill, C. A Path Towards Quantum Supremacy with Superconducting Qubits. PhD Thesis, Univ. California, Santa Barbara (2017).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Giamarchi, T. Quantum Physics in One Dimension Vol. 121 (Clarendon, 2003).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Manovitz, T., Shapira, Y., Akerman, N., Stern, A. & Ozeri, R. Quantum simulations with complex geometries and synthetic gauge fields in a trapped ion chain. PRX Quantum 1, 020303 (2020).
Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).
Pal, A. & Huse, D. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).
Ponte, P., Papić, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).
Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).
Kleemans, N. A. et al. Oscillatory persistent currents in self-assembled quantum rings. Phys. Rev. Lett. 99, 146808 (2007).
Bleszynski-Jayich, A. C. et al. Persistent currents in normal metal rings. Science 326, 272–275 (2009).
Thouless, D., Kohmoto, M., Nightingale, M. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).
Braun, D., Hofstetter, E., MacKinnon, A. & Montambaux, G. Level curvatures and conductances: A numerical study of the thouless relation. Phys. Rev. B 55, 7557 (1997).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
White, S. R. & Huse, D. A. Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S = 1 Heisenberg chain. Phys. Rev. B 48, 3844–3852 (1993).
Kelly, J., O’Malley, P., Neeley, M., Neven, H. & Martinis, J. Physical qubit calibration on a directed acyclic graph. Preprint at https://arxiv.org/abs/1803.03226 (2018).
Acknowledgements
We acknowledge discussions with B. Altshuler and L. Faoro. We thank J. Platt, J. Dean and J. Yagnik for their executive sponsorship of the Google Quantum AI team, and for their continued engagement and support. We thank A. Brown and J. Platt for reviewing and providing advice on the draft of the manuscript.
Author information
Authors and Affiliations
Contributions
C.N. designed and executed the experiment. C.N. and P.R. wrote the manuscript. C.N., T.M. and V. Smelyanskiy wrote the Supplementary Information. V. Smelyanskiy, S.B., T.M., Z.J., X.M., L.B.I. and C.N. provided the theoretical support and analysis techniques, the theory of Floquet calibration and the open system model. Y.C., V. Smelyanskiy and H.N. led and coordinated the project. Infrastructure support was provided by the hardware team. All authors contributed to revising the manuscript and the Supplementary Information.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks Jonas Bylander, Frank Wilhelm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Sections A-G, including Supplementary Figures 1-15 – see contents page for details.
Rights and permissions
About this article
Cite this article
Neill, C., McCourt, T., Mi, X. et al. Accurately computing the electronic properties of a quantum ring. Nature 594, 508–512 (2021). https://doi.org/10.1038/s41586-021-03576-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-03576-2
This article is cited by
-
Benchmarking universal quantum gates via channel spectrum
Nature Communications (2023)
-
Observing and braiding topological Majorana modes on programmable quantum simulators
Nature Communications (2023)
-
Accelerated quantum Monte Carlo with probabilistic computers
Communications Physics (2023)
-
Constant-depth circuits for dynamic simulations of materials on quantum computers
Materials Theory (2022)
-
Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer
Nature Communications (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.