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            Abstract
Ferroptosis, a form of regulated cell death that is induced by excessive lipid peroxidation, is a key tumour suppression mechanism1,2,3,4. Glutathione peroxidase 4 (GPX4)5,6 and ferroptosis suppressor protein 1 (FSP1)7,8 constitute two major ferroptosis defence systems. Here we show that treatment of cancer cells with GPX4 inhibitors results in acute depletion of N-carbamoyl-l-aspartate, a pyrimidine biosynthesis intermediate, with concomitant accumulation of uridine. Supplementation with dihydroorotate or orotateâ€”the substrate and product of dihydroorotate dehydrogenase (DHODH)â€”attenuates or potentiates ferroptosis induced by inhibition of GPX4, respectively, and these effects are particularly pronounced in cancer cells with low expression of GPX4 (GPX4low). Inactivation of DHODH induces extensive mitochondrial lipid peroxidation and ferroptosis in GPX4low cancer cells, and synergizes with ferroptosis inducers to induce these effects in GPX4high cancer cells. Mechanistically, DHODH operates in parallel to mitochondrial GPX4 (but independently of cytosolic GPX4 or FSP1) to inhibit ferroptosis in the mitochondrial inner membrane by reducing ubiquinone to ubiquinol (a radical-trapping antioxidant with anti-ferroptosis activity). The DHODH inhibitor brequinar selectively suppresses GPX4low tumour growth by inducing ferroptosis, whereas combined treatment with brequinar and sulfasalazine, an FDA-approved drug with ferroptosis-inducing activity, synergistically induces ferroptosis and suppresses GPX4high tumour growth. Our results identify a DHODH-mediated ferroptosis defence mechanism in mitochondria and suggest a therapeutic strategy of targeting ferroptosis in cancer treatment.
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                    Fig. 1: Metabolomics link DHODH to ferroptosis.[image: ]


Fig. 2: DHODH deletion promotes ferroptosis.[image: ]


Fig. 3: DHODH suppresses mitochondrial lipid peroxidation.[image: ]


Fig. 4: Inhibition of DHODH suppresses tumour growth by inducing ferroptosis.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Pharmacological inhibition of GPX4 affects intermediate levels in the de novo pyrimidine biosynthesis pathway.
aâ€“c, Volcano plots comparing metabolomic profiles from HT-1080 (a), A-498 (b) or RCC4 (c) cells treated with vehicle and the same cells treated with RSL3 (10Â Î¼M) or ML162 (10Â Î¼M) for 2Â h. d, e, Fold change in C-Asp and uridine induced by RSL3 (10Â Î¼M) or ML162 (10Â Î¼M) treatment for 2Â h compared with vehicle treatment in A-498 (d) or RCC4 (e) cells. f, Simplified schematic of de novo pyrimidine biosynthesis pathway. g, Fold change in intracellular DHO and OA levels upon treatment with vehicle, DHO (100Â Î¼M) or OA (100Â Î¼M), respectively, for 48Â h in NCI-H226 cells. h, Fold change in intracellular C-Asp levels upon treatment with vehicle or C-Asp (100Â Î¼M) for 48Â h in NCI-H226 cells. i, DHO activity in HT-1080 cells treated with RSL3 (10Â Î¼M) for 2Â h, following pretreatment with vehicle, OA (100Â Î¼M) for 24Â h, or Lip-1 (10Â Î¼M) for 48Â h. j, GPX4 protein levels in different cell lines determined by western blotting. k, Cell viability in TK-10, UMRC2, A-498 and RCC4 cells treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle, C-Asp (100Â Î¼M), DHO (100Â Î¼M), OA (100Â Î¼M), or uridine (50Â Î¼M) for 48Â h. l, Cell viability in SW620, U-87 MG, A549, NCI-H1437, MDA-MB-436 and MDA-MB-231 cells treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle, DHO (100Â Î¼M) or OA (100Â Î¼M) for 48Â h. m, GPX4, DHODH, and FSP1 protein levels in different cancer cell lines determined by western blotting. n, Cell viability in GPX4high (HT-1080, A-498, RCC4, 786-O, and 769-P) and GPX4low (HCT-8, UMRC6, TK-10, UMRC2, and NCI-H226) cells treated with different doses of the DHODH inhibitors BQR, leflunomide (LFM), or teriflunomide (TF) for 4Â h. Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats; unpaired, two-tailed t-test. Western blots are representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant. Asp, aspartate; C-P, carbamoyl phosphate; P, phosphate; FMN, flavin mononucleotide; FMNH2, reduced flavin mononucleotide; PRPP, phosphoribosyl pyrophosphate; PPi, inorganic pyrophosphate; OMP, orotidine 5â€²-monophosphate; UMP, uridine 5â€²-monophosphate.
Source data


Extended Data Fig. 2 The effect of DHODH inhibitors on inducing ferroptosis in different cancer cells with differential expression of GPX4.
a, b, Cell survival fraction and PTGS2 mRNA levels in NCI-H226 (a) and HT-1080 (b) cells upon treatment with BQR (500Â Î¼M for NCI-H226 cells; 5Â mM for HT-1080 cells), following pretreatment with vehicle, ZVF (10Â Î¼M), and/or Lip-1 (10Â Î¼M) for 24Â h. c, Cell viability in HT-1080 cells treated with different doses of RSL3 and co-treated with LFM (100Â Î¼M) or TF (500Â Î¼M) for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. d, Cell viability in HT-1080 cells treated with different doses of ML162 and co-treated with BQR (500Â Î¼M), LFM (100Â Î¼M), or TF (500Â Î¼M) for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. e, Cell survival fraction and PTGS2 mRNA levels in HT-1080 cells upon treatment with RSL3 (1Â Î¼M) and/or BQR (500Â Î¼M) for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. f, Cell viability in HT-1080 cells treated with different doses of sulfasalazine (SAS) and co-treated with BQR (500Â Î¼M), LFM (100Â Î¼M) or TF (500Â Î¼M) for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. g, Cell viability in HT-1080 cells treated with different doses of erastin and co-treated with BQR (500Â Î¼M), LFM (100Â Î¼M) or TF (500Â Î¼M) for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. h, mRNA levels of SLC7A11, GPX4, or ACSL4 (bar charts) and their protein expression (western blot), were measured in HT-1080 cells treated with BQR (500Â Î¼M), LFM (100Â Î¼M), or TF (500Â Î¼M) for 4Â h. i, GSH level measurement in HT-1080 cells upon treatment with BQR (500Â Î¼M), LFM (100Â Î¼M), or TF (500Â Î¼M) for 2Â h. Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats; unpaired, two-tailed t-test. Western blot is representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant.
Source data


Extended Data Fig. 3 DHODH deletion sensitizes GPX4high cancer cells to ferroptosis or induces ferroptosis in GPX4low cancer cells.
a, DHODH protein levels in Cas9 control and DHODH KO GPX4high cancer cell lines. b, DHO activity in Cas9 control and DHODH KO HT-1080 cells. c, Cell survival fraction in Cas9 control and DHODH KO HT-1080 cells upon treatment with vehicle or uridine (50Â Î¼M). d, PTGS2 mRNA levels in Cas9 control and DHODH KO HT-1080 cells. e, Lipid peroxidation in Cas9 control and DHODH KO GPX4high cell lines as indicated. f, Cell viability in Cas9 control and DHODH KO HT-1080 cells treated with different doses of ML162 for 4Â h. g, Cell survival fraction and PTGS2 mRNA levels in Cas9 control and DHODH KO HT-1080 cells upon treatment with RSL3 (1Â Î¼M) for 4Â h. h, Western blot analysis of DHODH and ACSL4 protein levels in HT-1080 cells with indicated genotypes. i, Cell viability measurement in HT-1080 cells with indicated genotypes treated with different doses of RSL3 for 4Â h. j, Measurement of SLC7A11, GPX4, and ACSL4 mRNA (bar charts) and protein levels (western blot) in Cas9 control and DHODH KO HT-1080 cells. k, GSH levels in Cas9 control and DHODH KO HT-1080 cells. l, DHODH protein levels in Cas9 control and DHODH KO GPX4low cell lines. m, DHO activity in Cas9 control and DHODH KO NCI-H226 cells. n, Cell proliferation of Cas9 control and DHODH KO NCI-H226 cells. o, PTGS2 mRNA levels in Cas9 control and DHODH KO NCI-H226 cells. p, Lipid peroxidation in Cas9 control and DHODH KO GPX4low cells. Cells were grown in medium supplemented with Lip-1 (10Â Î¼M) (l, m) and/or uridine (50Â Î¼M) (a, b, dâ€“p). Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats; unpaired, two-tailed t-test. Western blots are representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant.
Source data


Extended Data Fig. 4 Analyses of genetic interactions between DHODH and GPX4 (or FSP1).
a, Western blotting analysis of GPX4 and DHODH protein levels in shControl and shGPX4 HT-1080 cells. b, Cell proliferation of shControl and shGPX4 HT-1080 cells. c, Cell viability of shControl and shGPX4 HT-1080 cells treated with different doses of LFM or TF for 4Â h. d, Cell survival fraction and PTGS2 mRNA levels in shControl and shGPX4 HT-1080 cells upon treatment with BQR (500Â Î¼M) for 4Â h. e, Western blot analysis of GPX4 and DHODH protein levels in HT-1080 cells with indicated genotypes. f, PTGS2 mRNA levels in HT-1080 cells with indicated genotypes. g, Cell proliferation of HT-1080 cells with DHODH KO and shControl or shGPX4. h, Western blot analysis of DHODH and FSP1 protein levels in HT-1080 cells with indicated genotypes. i, Cell viability in Cas9 control or DHODH KO HT-1080 cells with indicated genotypes treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. j, Western blot analysis of DHODH and FSP1 protein levels in HT-1080 cells with indicated genotypes. k, Cell viability in Cas9 control or DHODH KO HT-1080 cells with indicated genotypes treated with different doses of RSL3 for 4 h, following pretreatment with vehicle or Lip-1 (10 Î¼M) for 24 h. l, Cell viability in Cas9 control or FSP1 KO HT-1080 cells treated with vehicle or BQR (500Â Î¼M), and different doses of RSL3 for 4Â h. m, Simplified schematic of DHODH protein and its mutants. n, Western blotting showing DHODH protein levels in cytosolic and mitochondrial fractions from DHODH KO HT-1080 cells that express the indicated DHODH constructs. o, DHO activity in DHODH KO HT-1080 cells that express the indicated DHODH constructs. p, Cell viability in DHODH KO HT-1080 cells that express the indicated DHODH constructs treated with different doses of ML162 for 4Â h. q, Cell survival fraction, lipid peroxidation and PTGS2 mRNA levels in DHODH KO HT-1080 cells that express the indicated DHODH constructs upon treatment with RSL3 (1Â Î¼M). Cells were grown in medium supplemented with uridine (50Â Î¼M) (eâ€“l, nâ€“q). Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats (bâ€“d, f, g, i, k, l, oâ€“q); unpaired, two-tailed t-test. Western blots are representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant. MTS, mitochondrial targeting sequence; DHOD domain, dihydroorotate dehydrogenase domain.
Source data


Extended Data Fig. 5 DHODH cooperates with mitochondrial GPX4 to suppress ferroptosis.
a, Western blotting analysis of GPX4 levels in cytosolic and mitochondrial fractions in a panel of cancer cell lines. b, Simplified schematic of cytosolic and mitochondrial GPX4 protein constructs. c, Western blotting showing GPX4 protein levels in cytosolic and mitochondrial fractions from shGPX4 HT-1080 cells that express the indicated GPX4 constructs. d, Cell viability in shGPX4 HT-1080 cells that express the indicated GPX4 constructs treated with different doses of LFM or TF for 4Â h. e, Cell survival fraction, lipid peroxidation and PTGS2 mRNA levels in shGPX4 HT-1080 cells that express the indicated GPX4 constructs upon treatment with BQR (500 Î¼M). f, Western blotting showing GPX4 protein levels in shGPX4 cells that express the indicated GPX4 constructs in a variety of cell lines. g, Cell viability measurement in various shGPX4 cells that express the indicated GPX4 constructs treated with different doses of BQR for 4Â h. Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats (d, e, g); unpaired, two-tailed t-test. Western blots are representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant.
Source data


Extended Data Fig. 6 Inactivation of DHODH and GPX4 induces mitochondrial lipid peroxidation.
a, Western blot showing GPX4 protein levels in cytosolic and mitochondrial fractions from NCI-H226 cells that express the indicated GPX4 constructs. b, Cell proliferation of NCI-H226 cells that express the indicated GPX4 constructs. c, Cell viability in NCI-H226 cells that express the indicated GPX4 constructs treated with different doses of BQR, LFM or TF for 4Â h. d, Cell survival fraction, lipid peroxidation and PTGS2 mRNA levels in NCI-H226 cells that express the indicated GPX4 constructs upon treatment with BQR (500Â Î¼M). e, Cell viability in Cas9 control and DHODH KO HT-1080 cells treated with different doses of ML162 for 4Â h, following pretreatment with vehicle, TEMPO (10Â Î¼M), MitoTEMPO (10Â Î¼M), or Lip-1 (10Â Î¼M) for 24Â h. f, Cas9 control and DHODH KO HT-1080 cells were treated with RSL3 (1Â Î¼M) for 2Â h, then stained with mito-BODIPY. Oxidized mito-BODIPY (green) indicates mitochondrial lipid peroxidation (scale bar,Â 5Â Î¼M). g, Mitochondrial lipid peroxidation in Cas9 control and DHODH KO HT-1080 cells upon treatment with RSL3 (1Â Î¼M) for 2Â h. h, Mitochondrial lipid peroxidation in shControl and shGPX4 HT-1080 cells upon treatment with BQR (500Â Î¼M) for 2Â h. i, Mitochondrial lipid peroxidation in HT-1080 cells upon treatment with RSL3 (1Â Î¼M) and/or BQR (500Â Î¼M), LFM (100Â Î¼M), or TF (500Â Î¼M) for 2Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. j, Mitochondrial lipid peroxidation in HT-1080 cells upon treatment with ML162 (1Â Î¼M) and/or BQR (500Â Î¼M), LFM (100Â Î¼M), or TF (500Â Î¼M) for 2Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. k, Mitochondrial lipid peroxidation in DHODH KO HT-1080 cells that express the indicated DHODH constructs upon treatment with RSL3 (1Â Î¼M) for 2Â h. l, m, Mitochondrial lipid peroxidation in Cas9 control and DHODH KO HT-1080 cells with indicated genotypes upon treatment with RSL3 (1Â Î¼M) for 2Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. n, Mitochondrial lipid peroxidation in Cas9 control and FSP1 KO HT-1080 cells upon treatment with RSL3 (1Â Î¼M) and/or BQR (500Â Î¼M) for 2Â h. o, Western blot analysis of DHODH and FSP1 protein levels in cytosolic and mitochondrial fractions of HT-1080 cells with indicated genotypes. p, Cell viability in Cas9 control and DHODH KO HT-1080 cells with indicated genotypes treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. q, Mitochondrial lipid peroxidation in Cas9 control and DHODH KO HT-1080 cells with indicated genotypes upon treatment with RSL3 (1Â Î¼M) for 2Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. r, Mitochondrial lipid peroxidation in shGPX4 HT-1080 cells that express the indicated GPX4 constructs upon treatment with BQR (500Â Î¼M) for 2Â h. s, Mitochondrial lipid peroxidation in NCI-H226 cells that express the indicated GPX4 constructs upon treatment with BQR (500Â Î¼M) for 2Â h. Cells were grown in medium supplemented with uridine (50Â Î¼M) (eâ€“g, kâ€“q). Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats (bâ€“e, gâ€“n, pâ€“s); unpaired, two-tailed t-test. Western blots are representative of two biological replicates. Images are representative of at least nÂ =Â 5 imaged cells (f). *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns. Not significant. Mito-C11, fluorescent mitochondria-targeted lipid peroxidation probe.
Source data


Extended Data Fig. 7 DHODH regulation of ferroptosis relates to its function to reduce CoQ to CoQH2 in mitochondria.
a, Cell viability in HT-1080 cells treated with different doses of FIN56 and co-treated with BQR (500Â Î¼M), LFM (100Â Î¼M) or TF (500Â Î¼M) for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. b, Cell survival fraction, mitochondrial lipid peroxidation and PTGS2 mRNA levels in HT-1080 cells upon treatment with vehicle, FIN56 (50Â Î¼M) and/or BQR (500Â Î¼M), following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. c, Western blot analysis of COQ2 and DHODH protein levels in HT-1080 cells with indicated genotypes. d, Total CoQ in Cas9 control and COQ2 KO HT-1080 cells. e, Total CoQ in HT-1080 cells that were treated with vehicle or 4-CBA (5Â mM) for 24Â h. f, Cell viability measurement in Cas9 control and DHODH KO HT-1080 cells with indicated genotypes treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. g, Cell viability in Cas9 control and DHODH KO HT-1080 cells with indicated genotypes treated with different doses of ML162 for 4Â h, following pretreatment with vehicle or Lip-1 (10Â Î¼M) for 24Â h. h, Cell viability in Cas9 control and DHODH KO HT-1080 cells treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle, 4-CBA (5Â mM), or 4-CBA (5Â mM) + Lip-1 (10Â Î¼M) for 24Â h. i, Cell viability in Cas9 control and DHODH KO HT-1080 cells treated with different doses of ML162 for 4Â h, following pretreatment with vehicle, 4-CBA (5Â mM) or Lip-1 (10Â Î¼M) for 24Â h. j, Mitochondrial lipid peroxidation in Cas9 control and DHODH KO HT-1080 cells upon treatment with RSL3 (1Â Î¼M), following pretreatment with vehicle, 4-CBA (5Â mM), or 4-CBA (5Â mM) + Lip-1 (10Â Î¼M) for 24Â h. k, Simplified schematic showing how DHODH couples the oxidation of DHO to OA to the reduction of CoQ to CoQH2 in the mitochondrial inner membrane. l, CoQ/CoQH2 ratio in NCI-H226 cells that were treated with BQR (1Â mM) for 2Â h. m, Cell viability in Cas9 control and DHODH KO HT-1080 cells treated with different doses of ML162 for 4Â h, following pretreatment with vehicle, MitoQ (10Â Î¼M), MitoQH2 (10Â Î¼M), or Lip-1 (10Â Î¼M) for 24Â h. n, Mitochondrial lipid peroxidation in Cas9 control and DHODH KO HT-1080 cells upon treatment with RSL3 (1Â Î¼M) for 2Â h, following pretreatment with vehicle, MitoQ (10Â Î¼M), MitoQH2 (10Â Î¼M), or Lip-1 (10Â Î¼M) for 24Â h. o, Lipid peroxidation in Cas9 control and DHODH KO HT-1080 cells upon treatment with RSL3 (1Â Î¼M) for 2Â h, following pretreatment with vehicle, MitoQ (10Â Î¼M), MitoQH2 (10Â Î¼M), or Lip-1 (10Â Î¼M) for 24Â h. Cells were grown in medium supplemented with uridine (50Â Î¼M) (c, d, fâ€“j, mâ€“o). Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats (a, b, dâ€“j, lâ€“o); unpaired, two-tailed t-test. Western blot is representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant. OCR, oxygen consumption rate; MitoQ, [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-phosphonium, monomethanesulfonate; MitoQH2, [10-(2,5-dihydroxy-3,4-dimethoxy-6-methylphenyl)decyl] triphenyl-phosphonium, monomethanesulfonate.
Source data


Extended Data Fig. 8 The effects of mitoQ and mitoQH2 on RSL3- and BQR-induced ferroptosis in a variety of cell lines.
a, GPX4, DHODH and FSP1 protein levels in indicated cell lines determined by western blotting. bâ€“j, Cell viability in 293T (b), Hela (c), Jurkat (d), SW620 (e), U-87 MG (f), A549 (g), NCI-H1437 (h), MDA-MB-436 (i), and MDA-MB-231 (j) cells treated with different doses of RSL3 with vehicle or BQR (500Â Î¼M) for 4Â h, following pretreatment with vehicle, MitoQ (10Â Î¼M), MitoQH2 (10Â Î¼M), or Lip-1 (10Â Î¼M) for 24Â h. k, CoQ/CoQH2 ratio in HT-1080 cells that were treated with myxothiazol (10Â Î¼M) for 2Â h. l, Cell viability in Cas9 control and DHODH KO HT-1080 cells treated with different doses of RSL3 for 4Â h, following pretreatment with vehicle or myxothiazol (1Â Î¼M) for 24Â h. m, CoQ/CoQH2 ratio in A549 cells that were treated with myxothiazol (10Â Î¼M) for 2Â h. n, Cell viability in A549 cells treated with different doses of RSL3 with or without BQR (500Â Î¼M) for 4Â h, following pretreatment with vehicle or myxothiazol (1Â Î¼M) for 24Â h. o, Western blot analysis of DHODH and CiAOX protein levels in HT-1080 cells with indicated genotypes. p, Mitochondrial lipid peroxidation in HT-1080 cells with indicated genotypes upon treatment with RSL3 (1Â Î¼M) for 2Â h. Cells were grown in medium supplemented with uridine (50Â Î¼M) (l, o, p). Data are presented as meanÂ Â±Â s.d., nÂ =Â 3 independent repeats (bâ€“n, p); unpaired, two-tailed t-test. Western blots are representative of two biological replicates. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant.
Source data


Extended Data Fig. 9 DHODH inhibitor selectively suppresses GPX4low tumour growth.
a, Weights of shControl and shGPX4 HT-1080 xenograft tumours with the indicated treatments. bâ€“d, Representative immunochemical images from shControl and shGPX4 HT-1080 xenograft tumours with the indicated treatments (b; scale bars,Â 20Â Î¼M), and staining scores of cleaved-caspase 3 (c) and ki67 (d). e, Weight measurements of NCI-H226 xenograft tumours with the indicated treatments. f, Weight measurements of TC632, TC629, or TC494 PDX tumours with the indicated treatments. g, Volumes of Cas9 control and DHODH KO NCI-H226 xenograft tumours with the indicated treatments at different time points (days). h, Weights of Cas9 control and DHODH KO NCI-H226 xenograft tumours with the indicated treatments. i, Weight measurements of HT-1080 xenograft tumours with the indicated treatments. jâ€“l, Representative immunochemistry images of HT-1080 xenograft tumours with the indicated treatments (j; scale bars,Â 20Â Î¼M) and staining scores of cleaved-caspase 3 (k) and ki67 (l). m, Volumes of TC629 PDX tumours with the indicated treatments at different time points (days). n, Weights of TC632 and TC629 PDX tumours with the indicated treatments. o, Weights of mice for all cell line xenografts or PDXs with different treatments at different time points (days). Box plots indicate median, minima and maxima of the distributions, and with whiskers from minimum to maximum. Data are presented as meanÂ Â±Â s.d., nÂ =Â 8 (a, e, gâ€“i), nÂ =Â 5 (c, d, k, l) or nÂ =Â 6 independent tumours (f, m, n). nÂ =Â 4 for nude mouse weights and nÂ =Â 8 for NSG mouse weights (o). Unpaired, two-tailed t-test. Images are representative of nÂ =Â 5 images. *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001, ****PÂ <Â 0.0001. ns, not significant. 4-HNE, 4-hydroxynonenal.
Source data


Extended Data Fig. 10 Working model depicting how GPX4, FSP1, and DHODH suppress ferroptosis in different subcellular compartments.
See main text for a detailed description. PLOOH, phospholipid hydroperoxide; PLOOÂ·, phospholipid hydroperoxyl radical; GSSH, oxidized glutathione; NAD(P)H, reduced nicotinamide adenine dinucleotide (phosphate); NAD(P)+, oxidized nicotinamide adenine dinucleotide (phosphate).
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