Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum-enhanced nonlinear microscopy


The performance of light microscopes is limited by the stochastic nature of light, which exists in discrete packets of energy known as photons. Randomness in the times that photons are detected introduces shot noise, which fundamentally constrains sensitivity, resolution and speed1. Although the long-established solution to this problem is to increase the intensity of the illumination light, this is not always possible when investigating living systems, because bright lasers can severely disturb biological processes2,3,4. Theory predicts that biological imaging may be improved without increasing light intensity by using quantum photon correlations1,5. Here we experimentally show that quantum correlations allow a signal-to-noise ratio beyond the photodamage limit of conventional microscopy. Our microscope is a coherent Raman microscope that offers subwavelength resolution and incorporates bright quantum correlated illumination. The correlations allow imaging of molecular bonds within a cell with a 35 per cent improved signal-to-noise ratio compared with conventional microscopy, corresponding to a 14 per cent improvement in concentration sensitivity. This enables the observation of biological structures that would not otherwise be resolved. Coherent Raman microscopes allow highly selective biomolecular fingerprinting in unlabelled specimens6,7, but photodamage is a major roadblock for many applications8,9. By showing that the photodamage limit can be overcome, our work will enable order-of-magnitude improvements in the signal-to-noise ratio and the imaging speed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Quantifying photodamage.
Fig. 3: Quantum-enhanced stimulated Raman microscopy.
Fig. 4: Quantum-enhanced imaging.

Data availability

The data that support the findings of this study are included in the Supplementary Information. This includes data quantifying the detector design and performance (Supplementary Figs. 35); example power spectral densities of the stimulated Raman signal-to-noise ratio with and without squeezing (Supplementary Fig. 6); the raw measured power spectral densities of detector electronic noise, shot-noise and squeezing (Supplementary Fig. 7); experimental measurements of the squeezed variance and classical deamplification of the Stokes field as a function of the optical parametric amplifier pump power (Supplementary Fig. 9); the photocurrent power spectral density used to determine the concentration sensitivity when probing the CH aromatic stretch band in polystyrene (Supplementary Fig. 10); measurements of cell photodamage (Supplementary Fig. 11); and comparative cell images with and without quantum enhancement (Supplementary Fig. 12). Further data are available from the corresponding author upon reasonable request. Source data are provided with this paper.


  1. 1.

    Taylor, M. A. & Bowen, W. P. Quantum metrology and its application in biology. Phys. Rep. 615, 1–59 (2016).

    ADS  MathSciNet  CAS  Google Scholar 

  2. 2.

    Li, B., Wu, C., Wang, M., Charan, K. & Xu, C, An adaptive excitation source for high-speed multiphoton microscopy. Nat. Methods 17, 163–166 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wäldchen, S., Lehmann, J., Klein, T., Van De Linde, S. & Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5, 15348 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mauranyapin, N. P., Madsen, L. S., Taylor, M. A., Waleed, M. & Bowen, W. P. Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photon. 11, 477–481 (2017).

    CAS  Google Scholar 

  5. 5.

    Slusher, R. E. Quantum optics in the ’80s. Opt. Photon. News 1, 27–30 (1990).

    ADS  Google Scholar 

  6. 6.

    Cheng, J.-X. & Sunney Xie, X. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Camp, C. H. Jr & Cicerone, M. T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photon. 9, 295–305 (2015).

    ADS  CAS  Google Scholar 

  9. 9.

    Fu, Y., Wang, H., Shi, R. & Cheng, J.-X. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt. Express 14, 3942–3951 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Alex, M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    Google Scholar 

  12. 12.

    Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sewell, R. J., Napolitano, M., Behbood, N., Colangelo, G. & Mitchell, M. W. Certified quantum non-demolition measurement of a macroscopic material system. Nat. Photon. 7, 517–520 (2013).

    ADS  CAS  Google Scholar 

  15. 15.

    Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).

    ADS  CAS  Google Scholar 

  16. 16.

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    ADS  CAS  Google Scholar 

  17. 17.

    Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Google Scholar 

  18. 18.

    Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    ADS  CAS  Google Scholar 

  19. 19.

    Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sabines-Chesterking, J. et al. Twin-beam sub-shot-noise raster-scanning microscope. Opt. Express 27, 30810–30818 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Samantaray, N., Ruo-Berchera, I., Meda, A. & Genovese, M. Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl. 6, e17005 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kalashnikov, D. A., Paterova, A. V., Kulik, S. P. & Krivitsky, L. A. Infrared spectroscopy with visible light. Nat. Photon. 10, 98–101 (2016).

    ADS  CAS  Google Scholar 

  27. 27.

    Paterova, A. V., Yang, H., An, C., Kalashnikov, D. A. & Krivitsky, L. A. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol. 3, 025008 (2018).

    ADS  Google Scholar 

  28. 28.

    Zhang, L. et al. Spectral tracing of deuterium for imaging glucose metabolism. Nat. Biomed. Eng. 3, 402–413 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tian, F. et al. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat. Commun. 7, 13283 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Liu, B. et al. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Appl. Phys. Lett. 106, 173704 (2015).

    ADS  Google Scholar 

  31. 31.

    Konstanze, T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).

    Google Scholar 

  32. 32.

    Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Freudiger, C. W. et al. Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photon. 8, 153–159 (2014).

    ADS  CAS  Google Scholar 

  34. 34.

    Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pooser, R. C. & Lawrie, B. Plasmonic trace sensing below the photon shot noise limit. ACS Photon. 3, 8–13 (2016).

    CAS  Google Scholar 

  36. 36.

    Dowran, M., Kumar, A., Lawrie, B. J., Pooser, R. C. & Marino, A. M. Quantum-enhanced plasmonic sensing. Optica 5, 628–633 (2018).

    ADS  CAS  Google Scholar 

  37. 37.

    Michael, A. et al. Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013).

    Google Scholar 

  38. 38.

    Michael, A. et al. Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X 4, 011017 (2014).

    Google Scholar 

  39. 39.

    Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    ADS  CAS  Google Scholar 

  40. 40.

    Phan, N. M., Cheng, M. F., Bessarab, D. A. & Krivitsky, L. A. Interaction of fixed number of photons with retinal rod cells. Phys. Rev. Lett. 112, 213601 (2014).

    ADS  Google Scholar 

  41. 41.

    Choi, Y. et al. Shot-noise-limited two-color stimulated Raman scattering microscopy with a balanced detection scheme. J. Phys. Chem. B 124, 2591–2599 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    de Andrade, R. B. et al. Quantum-enhanced continuous-wave stimulated Raman spectroscopy. Optica 7, 470–475 (2020).

    ADS  Google Scholar 

  43. 43.

    Triginer Garces, G. et al. Quantum-enhanced stimulated emission detection for label-free microscopy. Appl. Phys. Lett. 117, 024002 (2020).

    ADS  CAS  Google Scholar 

  44. 44.

    Okuno, M. et al. Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method. Angew. Chem. 122, 6925–6929 (2010).

    Google Scholar 

  45. 45.

    Kochan, K., Peng, H., Wood, B. R. & Haritos, V. S. Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging. Biotechnol. Biofuels 11, 106 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    A Roadmap for Quantum Technologies in the UK 16 (UK Quantum Technologies Programme, 2015);

  47. 47.

    Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Hoover, E. E. & Squier, J. A. Advances in multiphoton microscopy technology. Nat. Photon. 7, 93–101 (2013).

    ADS  CAS  Google Scholar 

  49. 49.

    Zong, C. et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat. Commun. 10, 5318 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Michael, Y., Bello, L., Rosenbluh, M. & Pe’er, A. Squeezing-enhanced Raman spectroscopy. npj Quantum Inf. 5, 81 (2019).

    ADS  Google Scholar 

Download references


We acknowledge W. Wasserman for sourcing the yeast cells in trying circumstances, U. Hoff for contributions to the construction of the apparatus and APE GmbH for support related to the laser system. This work was supported primarily by the Air Force Office of Scientific Research (AFOSR) grant FA2386-14-1-4046. It was also supported by the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUS, CE170100009). W.P.B. acknowledges the Australian Research Council Future Fellowship, FT140100650. M.A.T. acknowledges the Australian Research Council Discovery Early Career Research Award, DE190100641.

Author information




C.A.C., A.T., L.S.M. and M.A.T. collected the data. C.A.C. and A.T. performed the data analysis. C.A.C., A.T. and L.S.M. constructed the experiment. M.W. constructed the microscope, with contributions from M.A.T. and L.S.M. K.B. and B.H. designed and built the photodetector used to observe the stimulated Raman signal. C.A.C., L.S.M., M.A.T. and W.P.B. designed the experiment. M.A.T. and W.P.B. conceived the idea. W.P.B., M.A.T., A.T. and C.A.C. wrote the manuscript with contributions from all authors. W.P.B. led the project with assistance from M.A.T. and L.S.M.

Corresponding author

Correspondence to Warwick P. Bowen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file provides details about the theory, modelling, and experimental techniques used in the article.

Peer Review File

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casacio, C.A., Madsen, L.S., Terrasson, A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing