Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CO2 doping of organic interlayers for perovskite solar cells

An Author Correction to this article was published on 03 September 2021

Abstract

In perovskite solar cells, doped organic semiconductors are often used as charge-extraction interlayers situated between the photoactive layer and the electrodes. The π-conjugated small molecule 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD) is the most frequently used semiconductor in the hole-conducting layer1,2,3,4,5,6, and its electrical properties considerably affect the charge collection efficiencies of the solar cell7. To enhance the electrical conductivity of spiro-OMeTAD, lithium bis(trifluoromethane)sulfonimide (LiTFSI) is typically used in a doping process, which is conventionally initiated by exposing spiro-OMeTAD:LiTFSI blend films to air and light for several hours. This process, in which oxygen acts as the p-type dopant8,9,10,11, is time-intensive and largely depends on ambient conditions, and thus hinders the commercialization of perovskite solar cells. Here we report a fast and reproducible doping method that involves bubbling a spiro-OMeTAD:LiTFSI solution with CO2 under ultraviolet light. CO2 obtains electrons from photoexcited spiro-OMeTAD, rapidly promoting its p-type doping and resulting in the precipitation of carbonates. The CO2-treated interlayer exhibits approximately 100 times higher conductivity than a pristine film while realizing stable, high-efficiency perovskite solar cells without any post-treatments. We also show that this method can be used to dope π-conjugated polymers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gas-assisted doping of the hole-conducting material and optical properties of reaction products.
Fig. 2: Electronic structures of pristine and doped spiro-OMeTAD, and analysis of the precipitate produced during the CO2-assisted doping process.
Fig. 3: The proposed doping and precipitation reaction.
Fig. 4: Performance of perovskite solar cells using pristine and gas-treated hole conductors.
Fig. 5: Performance of perovskite solar cells using pristine or CO2-doped polymer interlayers.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes used for this study are available from the corresponding author upon reasonable request.

References

  1. Hawash, Z., Ono, L. K. & Qi, Y. B. Recent advances in spiro-MeOTAD hole transport material and its applications in organic–inorganic halide perovskite solar cells. Adv. Mater. Interfaces 5, 1700623 (2018).

    Article  CAS  Google Scholar 

  2. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  CAS  ADS  Google Scholar 

  3. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  CAS  ADS  Google Scholar 

  4. Tan, H. R. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, C. P., Li, C. T. & Ho, K. C. Use of organic materials in dye-sensitized solar cells. Mater. Today 20, 267–283 (2017).

    Article  CAS  Google Scholar 

  7. Cho, A. N. & Park, N. G. Impact of interfacial layers in perovskite solar cells. ChemSusChem 10, 3687–3704 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Cappel, U. B., Daeneke, T. & Bach, U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. Nano Lett. 12, 4925–4931 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Abate, A. et al. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, S., Yuan, W. & Meng, Y. S. Spectrum-dependent spiro-OMeTAD oxidization mechanism in perovskite solar cells. ACS Appl. Mater. Interfaces 7, 24791–24798 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen, W. H., Bailie, C. D., Unger, E. L. & McGehee, M. D. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136, 10996–11001 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Tan, B. et al. LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Ad. Energy Mater. 9, 1901519 (2019).

    Article  CAS  Google Scholar 

  13. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. van Reenen, S., Vitorino, M. V., Meskers, S. C. J., Janssen, R. A. J. & Kemerink, M. Photoluminescence quenching in films of conjugated polymers by electrochemical doping. Phys. Rev. B 89, 205206 (2014).

    Article  ADS  CAS  Google Scholar 

  15. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

  16. Cardona, C. M., Li, W., Kaifer, A. E., Stockdale, D. & Bazan, G. C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, B. et al. Tailor-making low-cost spiro[fluorene-9,9′-xanthene]-based 3D oligomers for perovskite solar cells. Chem 2, 676–687 (2017).

    Article  CAS  Google Scholar 

  18. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Speight, J. Lange’s Handbook of Chemistry 16th edn, Ch. 2 (McGraw-Hill Education, 2005).

  20. Chase, M. W. NIST-JANAF Thermochemical Tables 4th edn (American Institute of Physics, 1998).

  21. Macdiarmid, A. G., Mammone, R. J., Kaner, R. B. & Porter, S. J. The concept of doping of conducting polymers: the role of reduction potentials. Philos. Trans. R. Soc. A 314, 3–15 (1985).

    ADS  Google Scholar 

  22. Forward, R. L. et al. Protocol for quantifying the doping of organic hole-transport materials. ACS Energy Lett. 4, 2547–2551 (2019).

    Article  CAS  Google Scholar 

  23. Shirono, K., Morimatsu, T. & Takemura, F. Gas solubilities (CO2, O2, Ar, N2, H2, and He) in liquid chlorinated methanes. J. Chem. Eng. Data 53, 1867–1871 (2008).

    Article  CAS  Google Scholar 

  24. IUPAC. Solubility Data Series Vol. 7, 311 (Pergamon, 1981).

  25. IUPAC. Solubility Data Series Vol. 50, 257 (Pergamon, 1992).

  26. Koppenol, W. H. & Rush, J. D. Reduction potential of the CO2/CO2•− couple. A comparison with other C1 radicals. J. Phys. Chem. 91, 4429–4430 (1987).

    Article  CAS  Google Scholar 

  27. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 87, 1139–1150 (2015).

    Article  CAS  Google Scholar 

  28. Zhu, Z., Shi, X., Fan, G., Li, F. & Chen, J. Photo-energy conversion and storage in an aprotic Li–O2 battery. Angew. Chem. Int. Ed. 58, 19021 (2019).

    Article  CAS  Google Scholar 

  29. Gittleson, F. S. et al. Raman spectroscopy in lithium-oxygen battery systems. ChemElectroChem 2, 1446–1457 (2015).

    Article  CAS  Google Scholar 

  30. Ryu, W. H. et al. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 7, 12925 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Edström, K., Gustafsson, T. & Thomas, J. O. The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta 50, 397–403 (2004).

    Article  CAS  Google Scholar 

  32. Deng, X. Y. et al. Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24, 9474–9478 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng, N. N., He, P. & Zhou, H. S. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv. Energy Mater. 6, 1502303 (2016).

    Article  CAS  Google Scholar 

  35. Xie, J. F., Liu, Q., Huang, Y. Y., Wu, M. X. & Wang, Y. B. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO. J. Mater. Chem. A 6, 13952–13958 (2018).

    Article  CAS  Google Scholar 

  36. Ma, S. Y. et al. Tailoring the components and morphology of discharge products towards highly rechargeable Li-CO/CO2 batteries. Chem. Commun. 54, 8072–8075 (2018).

    Article  CAS  Google Scholar 

  37. Strehle, B., Solchenbach, S., Metzger, M., Schwenke, K. U. & Gasteiger, H. A. The effect of CO2 on alkyl carbonate trans-esterification during formation of graphite electrodes in Li-ion batteries. J. Electrochem. Soc. 164, A2513–A2526 (2017).

    Article  CAS  Google Scholar 

  38. Lamberti, F. et al. Evidence of spiro-OMeTAD de-doping by tert-butylpyridine additive in hole-transporting layers for perovskite solar cells. Chem 5, 1806–1817 (2019).

    Article  CAS  Google Scholar 

  39. Yaws, C. L. & Satyro, M. A. in The Yaws Handbook Of Vapor Pressure: Antoine Coefficients 2nd edn (ed. Yaws, C. L.) Ch. 1 (Gulf, 2015).

  40. Wang, S. et al. Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett. 16, 5594–5600 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Liu, B. et al. Recent advances in understanding Li-CO2 electrochemistry. Energy Environ. Sci. 12, 887–922 (2019).

    Article  CAS  Google Scholar 

  42. Liu, G. L., Xi, X., Chen, R. L., Chen, L. P. & Chen, G. Q. Oxygen aging time: a dominant step for spiro-OMeTAD in perovskite solar cells. J. Renew. Sustain. Energy 10, 043702 (2018).

    Article  CAS  Google Scholar 

  43. An, Y. et al. Perovskite solar cells: optoelectronic simulation and optimization. Sol. RRL 2, 1800126 (2018).

    Article  CAS  Google Scholar 

  44. Schloemer, T. H., Christians, J. A., Luther, J. M. & Sellinger, A. Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem. Sci. 10, 1904–1935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hawash, Z., Ono, L. K. & Qi, Y. B. Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells. Adv. Mater. Interfaces 3, 1600117 (2016).

    Article  CAS  Google Scholar 

  46. Dawson, J. A. et al. Mechanisms of lithium intercalation and conversion processes in organic–inorganic halide perovskites. ACS Energy Lett. 2, 1818–1824 (2017).

    Article  CAS  Google Scholar 

  47. Li, Z. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10, 1234–1242 (2017).

    Article  CAS  Google Scholar 

  48. Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).

    Article  CAS  Google Scholar 

  49. Le Corre, V. M. et al. Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness. ACS Appl. Energy Mater. 2, 6280–6287 (2019).

    Article  CAS  Google Scholar 

  50. Luo, D. Y., Su, R., Zhang, W., Gong, Q. H. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  ADS  Google Scholar 

  51. Kim, G. et al. A thermally induced perovskite crystal control strategy for efficient and photostable wide-bandgap perovskite solar cells. Sol. RRL 4, 2000033 (2020).

    Article  CAS  Google Scholar 

  52. Lee, J. et al. A printable organic electron transport layer for low-temperature-processed, hysteresis-free, and stable planar perovskite solar cells. Adv. Energy Mater. 7, 1700226 (2017).

    Article  CAS  Google Scholar 

  53. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  CAS  Google Scholar 

  54. Almora, O., Aranda, C., Mas-Marza, E. & Garcia-Belmonte, G. On Mott–Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 109, 173903 (2016).

    Article  ADS  CAS  Google Scholar 

  55. Snow, A. W., Barger, W. R., Klusty, M., Wohltjen, H. & Jarvis, N. L. Simultaneous electrical-conductivity and piezoelectric mass measurements on iodine-doped phthalocyanine Langmuir–Blodgett films. Langmuir 2, 513–519 (1986).

    Article  CAS  Google Scholar 

  56. Frisch, M. J. et al. Gaussian 16 Rev. C.01 (Gaussian Inc., 2016).

  57. Martínez, L., Andrade, R., Birgin, E. G. & Martinez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  CAS  Google Scholar 

  58. Kim, D. Y. et al. Ni-stabilizing additives for completion of Ni-rich layered cathode systems in lithium-ion batteries: an ab initio study. J. Power Sources 418, 74–83 (2019).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation NSF-PECASE award (CBET-0954985) and New York University for partial support of this work. J.K. acknowledges support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A2C1008968, 2020R1A6A1A03038697); J.M. from the China Scholarship Council and F.A. from the NSF Fellowship program. This research used resources of the NYU Tandon Nanofabrication Cleanroom & Shared Instrumentation Facilities, and the Center for Functional Nanomaterials (CFN), which is a US DOE Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceived the project, and it was supervised by A.D.T. J.K. and Y.S. designed the experiments. J.K. and J.A.R. discussed and analysed data. J.K. prepared samples and devices for XPS, CV, JV and conductivity studies, and conducted the measurements. J.K. and J.M. fabricated and measured solar cells. Y.W. and Hailiang Wang conducted GC-FID measurements. J.K. and Hang Wang prepared the samples for TGA–MS analysis. Y.S. and D.Y.K. carried out the DFT calculations. G.K., J.K., S.K. and K.L. set up the MPP tracking experiments and J.K. conducted them. A.K., T.S. and M.A.M. patterned electrodes for conductivity measurements. E.C. and J.R.K. set up the photoluminescence measurement system, and J.K., Hang Wang, E.C. and F.A. conducted photoluminescence measurements. T.-D.L. performed ToF-SIMS analysis. Hang Wang provided details for the reactions involving O2 or CO2. J.K., J.A.R. and A.D.T. wrote the draft of the paper, and all authors read and approved the paper.

Corresponding author

Correspondence to André D. Taylor.

Ethics declarations

Competing interests

J.K., J.A.R., and A.D.T. have filed a PCT patent application.

Additional information

Peer review information Nature thanks Jianfeng Lu and Tracy Schloemer for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Possible doping routes.

a, Energy band diagram of spiro-OMeTAD and gas reduction potentials of O2 and CO2. Reduced or negatively charged gases will react with lithium ions, producing lithium oxide and carbonate. The HOMO level (−5.13 eV) of spiro-OMeTAD was estimated from the equation EHOMO = –(Eox + 4.5 eV), where the vacuum level (E = 0 eV) is equivalent to –4.5 V vs SHE15,16,17. The LUMO level (−2.05 eV) was estimated by adding the HOMO level and optical band gap (Egap)17. b, c, Possible detailed reaction paths for lithium oxide from the O2 bubbling process (b) and for lithium carbonate from the CO2 bubbling process (c). The redox potentials and Gibbs free energy (ΔfG°) of each reaction are calculated using values from the thermodynamic database27.

Extended Data Fig. 2 Optical data for CO2-treated spiro-OMeTAD:LiTFSI.

a, b, Transmittance and reflectance (a) and absorptance (b) spectra of the CO2-treated spiro-OMeTAD:LiTFSI film. The standardized absorptance ratio (SAR) is calculated from the ratio of absorptance at 521 nm and 407 nm.

Source data

Extended Data Fig. 3 JV data for a solar cell with a CO2-treated spiro-OMeTAD:LiTFSI HTL before and after air exposure.

a, b, JV curves of the solar cell before (a) and after (b) air exposure for 120 min.

Source data

Extended Data Fig. 4 JV data for a solar cell with a pristine spiro-OMeTAD:LiTFSI HTL before and after air exposure.

ae, JV curves of the solar cell upon exposure to air for 0 min (a), 10 min (b), 30 min (c), 60 min (d) and 120 min (e).

Source data

Extended Data Fig. 5 JV data for a solar cell with an O2-treated spiro-OMeTAD:LiTFSI HTL before and after air exposure.

a, Summary of evolution of the JV curve of the solar cell upon exposure to air. be, Separate JV data for the solar cell upon exposure to air for 0 min (b), 10 min (c), 30 min (d), 60 min (e) and 120 min (f).

Source data

Extended Data Fig. 6 Changes in the electrical conductivity of spiro-OMeTAD:LiTFSI films fabricated using pristine, O2- and CO2-bubbled spiro-OMeTAD:LiTFSI solutions, and the conductivity changes of pristine films over time upon exposure to air.

a, Electrical conductivities (σ) of the films fabricated with pristine, O2-treated and CO2-treated spiro-OMeTAD:LiTFSI solutions. b, Electrical conductivity evolution for a pristine spiro-OEMeTAD:LiTFSI film in air over time. Central bars or empty circles in the graphs represent average values obtained from 4 samples, and error bars show deviations.

Source data

Extended Data Fig. 7 TOF-SIMS 2D elemental mapping for Li ion.

Green dots represent Li ions. The scale bar for the Li ion signal intensity in each map was adjusted for the best viewing level. a, The density of Li ions is high, forming clusters in the pristine spiro-OMeTAD:LiTFSI film. b, There are few Li ions in the CO2-treated spiro-OMeTAD:LiTFSI film, because Li2CO3 precipitate (the doping by-product) was filtered out before film fabrication.

Extended Data Fig. 8 TOF-SIMS depth profiles.

ac, Solar cells with a pristine spiro-OMeTAD:LiTFSI HTL (a), a spiro-OMeTAD:LiTFSI:Co(III)TFSI HTL (b) and a CO2-treated spiro-OMeTAD:LiTFSI HTL (c).

Source data

Extended Data Fig. 9 MPP traces for solar cells with pristine spiro-OMeTAD:LiTFSI, spiro-OMeTAD:LiTFSI:Co(III)TFSI, and CO2-treated spiro-OMeTAD:LiTFSI as an HTL.

MPP was collected every 350 ms under continuous light illumination (100 mW cm−2, AM1.5G) with neither a UV cut-off filter nor a temperature controller. Raw data, including spikes that might originate from a lamp power instability, are presented.

Source data

Extended Data Fig. 10 Changes in the electrical conductivity of polymer:LiTFSI films with CO2 doping.

ac, CO2 doping enhances the electrical conductivities of polymer:LiTFSI films that are composed of P3HT:LiTFSI (a), PBDB-T:LiTFSI (b), PTAA:LiTFSI (c) and MEH-PPV:LiTFSI (d). Central bars or empty circles in the graphs represent average values obtained from 4 samples, and error bars show standard deviations.

Source data

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–9 and Supplementary Tables 1–4.

Supplementary Data

This zipped file contains source data for Supplementary Figures 1–6 and 8.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Shin, Y., Röhr, J.A. et al. CO2 doping of organic interlayers for perovskite solar cells. Nature 594, 51–56 (2021). https://doi.org/10.1038/s41586-021-03518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03518-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing