Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Asymmetric response of interfacial water to applied electric fields

Matters Arising to this article was published on 01 March 2023


Our understanding of the dielectric response of interfacial water, which underlies the solvation properties and reaction rates at aqueous interfaces, relies on the linear response approximation: an external electric field induces a linearly proportional polarization. This implies antisymmetry with respect to the sign of the field. Atomistic simulations have suggested, however, that the polarization of interfacial water may deviate considerably from the linear response. Here we present an experimental study addressing this issue. We measured vibrational sum-frequency generation spectra of heavy water (D2O) near a monolayer graphene electrode, to study its response to an external electric field under controlled electrochemical conditions. The spectra of the OD stretch show a pronounced asymmetry for positive versus negative electrode charge. At negative charge below 5 × 1012 electrons per square centimetre, a peak of the non-hydrogen-bonded OD groups pointing towards the graphene surface is observed at a frequency of 2,700 per centimetre. At neutral or positive electrode potentials, this ‘free-OD’ peak disappears abruptly, and the spectra display broad peaks of hydrogen-bonded OD species (at 2,300–2,650 per centimetre). Miller’s rule1 connects the vibrational sum-frequency generation response to the dielectric constant. The observed deviation from the linear response for electric fields of about ±3 × 108 volts per metre calls into question the validity of treating interfacial water as a simple dielectric medium.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental cell and graphene doping concentration measurements.
Fig. 2: VSFG spectra of D2O at the graphene electrode, at different electrode potentials versus Ag/AgCl.
Fig. 3: Disentangling the surface response of water from the bulk response.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Miller, R. C. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5, 17–19 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Wyman, J. Measurements of the dielectric constants of conducting media. Phys. Rev. 35, 623–634 (1930).

    Article  ADS  CAS  Google Scholar 

  3. Kirkwood, J. G. The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939).

    Article  ADS  CAS  Google Scholar 

  4. Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. & Geissler, P. L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Nihonyanagi, S. et al. Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface. J. Am. Chem. Soc. 133, 16875–16880 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Du, Q., Freysz, E. & Shen, Y. R. Vibrational spectra of water molecules at quartz/water interfaces. Phys. Rev. Lett. 72, 238–241 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Schaefer, J., Gonella, G., Bonn, M. & Backus, E. H. G. Surface-specific vibrational spectroscopy of the water/silica interface: screening and interference. Phys. Chem. Chem. Phys. 19, 16875–16880 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130, 204704 (2009).

    Article  ADS  PubMed  Google Scholar 

  10. Wen, Y. C. et al. Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys. Rev. Lett. 116, 016101 (2016).

    Article  ADS  PubMed  Google Scholar 

  11. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ohto, T., Tada, H. & Nagata, Y. Structure and dynamics of water at water–graphene and water–hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy. Phys. Chem. Chem. Phys. 20, 12979–12985 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Ostrowski, J. H. J. & Eaves, J. D. The tunable hydrophobic effect on electrically doped graphene. J. Phys. Chem. B 118, 530–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Du, Q., Superfine, R., Freysz, E. & Shen, Y. R. Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70, 2313–2316 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Stiopkin, I. V. et al. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474, 192–195 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ohno, P. E., Wang, H.-f., Paesani, F., Skinner, J. L. & Geiger, F. M. Second-order vibrational lineshapes from the air/water interface. J. Phys. Chem. A 122, 4457–4464 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Singla, S. et al. Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy. ACS Nano 11, 4899–4906 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Ohno, P. E., Wang, H.-f. & Geiger, F. M. Second-order spectral lineshapes from charged interfaces. Nat. Commun. 8, 1032 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Gonella, G., Lütgebaucks, C., de Beer, A. G. F. & Roke, S. Second harmonic and sum-frequency generation from aqueous interfaces is modulated by interference. J. Phys. Chem. C 120, 9165–9173 (2016).

    Article  CAS  Google Scholar 

  20. Ong, S., Zhao, X. & Eisenthal, K. B. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 191, 327–335 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Zhang, Y., de Aguiar, H. B., Hynes, J. T. & Laage, D. Water structure, dynamics, and sum-frequency generation spectra at electrified graphene interfaces. J. Phys. Chem. Lett. 11, 624–631 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Bratko, D., Daub, C. D., Leung, K. & Luzar, A. Effect of field direction on electrowetting in a nanopore. J. Am. Chem. Soc. 129, 2504–2510 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. von Domaros, M., Bratko, D., Kirchner, B. & Luzar, A. Dynamics at a Janus interface. J. Phys. Chem. C 117, 4561–4567 (2013).

    Article  Google Scholar 

  24. Na, X., Ning, Z. & Rong-Qing, X. Effect of driving voltage polarity on dynamic response characteristics of electrowetting liquid lens. Jpn. J. Appl. Phys. 57, 052201 (2018).

    Article  ADS  Google Scholar 

  25. Zhang, Y., Stirnemann, G., Hynes, J. T. & Laage, D. Water dynamics at electrified graphene interfaces: a jump model perspective. Phys. Chem. Chem. Phys. 22, 10581–10591 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Alper, H. E. & Levy, R. M. Field strength dependence of dielectric saturation in liquid water. J. Phys. Chem. 94, 8401–8403 (1990).

    Article  CAS  Google Scholar 

  28. Zhang, C. & Sprik, M. Electromechanics of the liquid water vapour interface. Phys. Chem. Chem. Phys. 22, 10676–10686 (2020).

    Article  PubMed  Google Scholar 

  29. Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Benderskii, V. A. & Velichko, G. I. Temperature jump in electric double-layer study: Part I. Method of measurements. J. Electroanal. Chem. Interfacial Electrochem. 140, 1–22 (1982).

    Article  CAS  Google Scholar 

  31. Kim, S. M. et al. The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24, 365602 (2013).

    Article  PubMed  Google Scholar 

  32. Shi, H. et al. Sensing local pH and ion concentration at graphene electrode surfaces using in situ Raman spectroscopy. Nanoscale 10, 2398–2403 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, C.-C., Chang, C.-C., Li, Z., Levi, A. F. J. & Cronin, S. B. Gate tunable graphene–silicon ohmic/Schottky contacts. Appl. Phys. Lett. 101, 223113 (2012).

    Article  ADS  Google Scholar 

  34. Stiopkin, I. V., Jayathilake, H. D., Weeraman, C. & Benderskii, A. V. Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation. J. Chem. Phys. 132, 234503 (2010).

    Article  ADS  PubMed  Google Scholar 

  35. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  ADS  Google Scholar 

  37. Froehlicher, G. & Berciaud, S. Raman spectroscopy of electrochemically gated graphene transistors: geometrical capacitance, electron–phonon, electron–electron, and electron–defect scattering. Phys. Rev. B 91, 205413 (2015).

    Article  ADS  Google Scholar 

  38. Shi, H. et al. Monitoring local electric fields at electrode surfaces using surface enhanced Raman scattering-based Stark-shift spectroscopy during hydrogen evolution reactions. ACS Appl. Mater. Interfaces 10, 33678–33683 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Sethna, P. P., Palmer, K. F. & Williams, D. Optical constants of D2O in the infrared. J. Opt. Soc. Am. 68, 815–817 (1978);

  40. Joutsuka, T., Hirano, T., Sprik, M. & Morita, A. Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water. Phys. Chem. Chem. Phys. 20, 3040–3053 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references


This research was supported by Air Force Office of Scientific Research grant nos FA9550-15-1-0184 and FA9550-19-1-0115 (A.M., C.D., M.M., S.B.C., A.V.B.), Army Research Office award no. W911NF-17-1-0325 (B.Z.), US Department of Energy, Office of Science, Office of Basic Energy Sciences award DE-SC0019322 (B.H.), and National Science Foundation award no. CHE-1708581 (H.S.).

Author information

Authors and Affiliations



H.S., B.H., B.Z. and S.B.C. manufactured graphene electrodes. A.M., H.S., B.H. and S.B.C. performed electrochemical measurements and Raman spectroscopy. A.M., C.D., M.M., D.B. and A.V.B. performed VSFG measurements. A.M., C.D., M.M. and A.V.B. contributed VSFG spectral analysis.

Corresponding author

Correspondence to Alexander V. Benderskii.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Franz Geiger, Dusan Bratko, Poul Petersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Raman spectrum of the graphene electrode.

For a high-quality, defect-free graphene monolayer, the ratio of intensities of the 2D to G band is about 2. A.U., arbitrary units.

Extended Data Fig. 2 Electrochemical current with D2O in the cell versus applied voltage to the graphene electrode versus Ag/AgCl.

The fact that the current magnitude does not exceed 100 μA for the voltages that were applied implies that water splitting does not occur to an appreciable degree.

Extended Data Fig. 3 SFG spectra of the graphene–D2O interface at 0.3 V (versus Ag/AgCl).

Spectra at 0.3 V were taken several times throughout the experiment to verify that there was no drift in the SFG signal with time.

Extended Data Fig. 4 SFG spectra of graphene–D2O following dilution with H2O.

Isotopic exchange weakens the peak at ~2,700 cm−1, confirming that D2O is responsible for this signal. A.U., arbitrary units.

Extended Data Fig. 5 Linear dependence of G-band Raman shift on applied voltage in both the two-terminal and three-terminal configurations.

A two-terminal voltage (applied versus glassy carbon) can be converted to a voltage versus Ag/Cl in the three-terminal configuration by exploiting the linearity of the G-band shift with respect to the applied voltage.

Extended Data Fig. 6 Electric-field-dependent SFG spectra of the graphene–D2O interface.

ac, Spectra are shown for the graphene–D2O interface (a), and its decomposition into the \({\chi }_{{\rm{s}}}^{(2)}\) (surface; b) and \({\chi }_{{\rm{S}},{\rm{DL}}}^{(2)}\,\) (bulk; c) contributions. With the bulk contribution known from the literature, the surface contribution is found through a spectral fitting procedure.

Extended Data Table 1 Spectral best-fit results for the decomposition of χ(2) and χ(3) responses

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montenegro, A., Dutta, C., Mammetkuliev, M. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing