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Multilevel proteomics reveals host 
perturbations by SARS-CoV-2 and SARS-CoV

Alexey Stukalov1,13, Virginie Girault1,13, Vincent Grass1,13, Ozge Karayel2,13, Valter Bergant1,13, 
Christian Urban1,13, Darya A. Haas1,13, Yiqi Huang1,13, Lila Oubraham1, Anqi Wang1, 
M. Sabri Hamad1, Antonio Piras1, Fynn M. Hansen2, Maria C. Tanzer2, Igor Paron2, 
Luca Zinzula3, Thomas Enghleitner4, Maria Reinecke5,6, Teresa M. Lavacca1, Rosina Ehmann7,8, 
Roman Wölfel7,8, Jörg Jores9, Bernhard Kuster5,6, Ulrike Protzer1,8, Roland Rad4, 
John Ziebuhr10, Volker Thiel11, Pietro Scaturro1,12, Matthias Mann2 & Andreas Pichlmair1,8 ✉

The global emergence of SARS-CoV-2 urgently requires an in-depth understanding of 
molecular functions of viral proteins and their interactions with the host proteome. 
Several individual omics studies have extended our knowledge of COVID-19 
pathophysiology1–10. Integration of such datasets to obtain a holistic view of virus-host 
interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the 
heterogeneity of the experimental systems. We therefore conducted a concurrent 
multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, 
we profiled the interactome of both viruses, as well as their influence on 
transcriptome, proteome, ubiquitinome and phosphoproteome in a lung-derived 
human cell line. Projecting these data onto the global network of cellular interactions 
revealed crosstalk between the perturbations taking place upon SARS-CoV-2 and 
SARS-CoV infections at different layers and identified unique and common molecular 
mechanisms of these closely related coronaviruses. The TGF-β pathway, known for its 
involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and 
autophagy by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.
innatelab.org) highlights many hotspots that can be targeted by existing drugs and it 
can guide rational design of virus- and host-directed therapies, which we exemplify by 
identifying kinase and MMPs inhibitors with potent antiviral effects against 
SARS-CoV-2.

Virus-host interactome and effectome
To identify interactions of SARS-CoV-2 and SARS-CoV with cellular 
proteins, we transduced A549 lung carcinoma cells with lentiviruses 
expressing individual HA-tagged viral proteins (Figure 1a; Extended 
data Fig. 1a; Supplementary Table 1). Affinity purification followed by 
mass spectrometry (AP-MS) analysis and statistical modelling of the 
quantitative data identified 1 801 interactions between 1 086 cellular 
proteins and 24 SARS-CoV-2 and 27 SARS-CoV bait proteins (Figure 1b; 
Extended data Fig. 1b; Supplementary Table 2), significantly expanding 
the currently reported interactions of SARS-CoV-2 and SARS-CoV (Sup-
plementary Table 10)1–11. The resulting virus-host interaction network 
revealed a wide range of cellular activities intercepted by SARS-CoV-2 
and SARS-CoV (Figure 1b; Extended data Table 1; Supplementary 
Table 2). In particular, we discovered that SARS-CoV-2 targets a number 

of key innate immunity regulators (ORF7b–MAVS, –UNC93B1), stress 
response components (N–HSPA1A) and DNA damage response media-
tors (ORF7a–ATM, –ATR) (Figure 1b; Extended data Fig. 1c-e). Addition-
ally, SARS-CoV-2 proteins interact with molecular complexes involved 
in intracellular trafficking (e.g. ER Golgi trafficking) and transport (e.g. 
Solute carriers, Ion transport by ATPases) as well as cellular metab-
olism (e.g. Mitochondrial respiratory chain, Glycolysis) (Figure 1b, 
Extended data Table 1, Supplementary Table 2). Comparing the AP-MS 
data of homologous SARS-CoV-2 and SARS-CoV proteins identified 
differences in the enrichment of individual host targets, highlighting 
potential virus-specific interactions (Figure 1b (edge color); Figure 1c; 
Extended data Fig. 1f, 2a-b; Supplementary Table 2). For instance, we 
recapitulated the known interaction between SARS-CoV NSP2 and 
prohibitins (PHB, PHB2)12 but this was not conserved in SARS-CoV-2 
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NSP2, suggesting that the two viruses differ in their ability to modulate 
mitochondrial function and homeostasis through NSP2 (Extended 
data Fig. 2a). The exclusive interaction of SARS-CoV-2 ORF8 with the 
TGFB1-LTBP1 complex is another interaction potentially explaining 
the differences in pathogenicity of the two viruses (Extended data 
Fig. 1f, 2b). Notably, disbalanced TGF-β signaling has been linked to 
lung fibrosis and oedema, a common complication of severe pulmonary 
diseases including COVID-1913–16.

To map the virus-host interactions to the functions of viral proteins, 
we have conducted an unprecedented study of total proteomes of A549 
cells expressing 54 individual viral proteins, the “effectome” (Figure 1a; 
Supplementary Table 3). This dataset provides clear links between 
protein expression changes and virus-host interactions, as exemplified 
by ORF9b, which leads to a dysregulation of mitochondrial functions 
and binds to TOMM70, a known regulator of mitophagy2,17 (Figure 1b; 
Supplementary Tables 2, 3). Global pathway enrichment analysis of 
the effectome dataset confirmed such mitochondrial dysregulation 
by ORF9b of both viruses2,18 (Extended data Fig. 2c; Supplementary 
Table 3) and further highlighted virus-specific effects, as exempli-
fied by the exclusive upregulation of proteins involved in cholesterol 
metabolism (CYP51A1, DHCR7, IDI1, SQLE) by SARS-CoV-2 NSP6. Intrigu-
ingly, cholesterol metabolism was recently shown to be implicated in 
SARS-CoV-2 replication and suggested as a promising target for drug 
development19–21. Beside perturbations at the pathway level, viral pro-
teins specifically modulated single host proteins, possibly explaining 
more distinct molecular mechanisms involved in viral protein func-
tion. Focusing on the 180 most affected host proteins, we identified 
RCOR3, a putative transcriptional corepressor, as strongly upregulated 
by NSP4 of both viruses (Extended data Fig. 2d, 3a). Remarkably, the 
apolipoprotein B (APOB) was substantially regulated by ORF3 and 
NSP1 of SARS-CoV-2, suggesting its importance for SARS-CoV-2 biology 
(Extended data Fig. 3b).

Multi-omics profiling of virus infection
While interactome and effectome provide in-depth information on 
the activity of individual viral proteins, we wished to directly study 
their concerted activities in the context of viral infection. To this end, 
we infected ACE2-expressing A549 cells (Extended data Fig. 4a, b) with 
SARS-CoV-2 and SARS-CoV, and profiled the impact of viral infection 
on mRNA expression, protein abundance, ubiquitination and phos-
phorylation in a time-resolved manner (Figure 2a-b).

In line with previous reports9,22, both SARS-CoV-2 and SARS-CoV 
share the ability to down-regulate type-I interferon response and acti-
vate a pro-inflammatory signature at transcriptome and proteome 
levels (Figure 2a-c, Extended data Fig. 4c-f, i, Supplementary Table 4, 
8, Supplementary discussion 1). However, SARS-CoV elicited a more 
pronounced activation of the NFkB pathway, correlating with its higher 
replication rate and potentially explaining the reduced severity of 
pulmonary disease in case of SARS-CoV-223 (Supplementary Tables 4, 
5). In contrast, SARS-CoV-2 infection led to higher expression of FN1 
and SERPINE1, which may be linked to the specific recruitment of TGFB 
factors (Figure 1b) and supporting regulation of TGF-β signaling by 
SARS-CoV-2.

To better understand the mechanisms underlying perturbation 
of cellular signaling, we performed comparative ubiquitination and 
phosphorylation profiling of SARS-CoV-2 and SARS-CoV infection. 
This analysis identified 1 108 of 16 541 detected ubiquitination sites 
to be differentially regulated by SARS-CoV-2 or SARS-CoV infection 
(Figure 2a, b, d, Extended data Fig. 5a; Supplementary Table 6). More 
than half of the significant sites were regulated in a similar manner by 
both viruses. These included sites on SLC35 and SUMO family proteins, 
indicating possible regulation of sialic acid transport and the process 
of SUMO-regulation itself. SARS-CoV-2 specifically increased ubiquit-
ination on autophagy-related factors (MAP1LC3A, GABARAP, VPS33A, 

VAMP8) as well as particular sites on EGFR (e.g. K739, K754, K970). Some-
times the two viruses targeted distinct sites on the same cellular pro-
tein, as exemplified by HSP90 family members (HSP90AA1-K84, -K191 
and -K539) (Figure 2d). Notably, a number of proteins (e.g. ALCAM, 
ALDH3B1, CTNNA1, EDF1 and SLC12A2) exhibited concomitant ubiq-
uitination and a decrease at the protein level after infection, pointing 
to ubiquitination-mediated protein degradation (Figure 2d; Extended 
data Fig. 4f, 5a; Supplementary Tables 5, 6). Among these downregu-
lated proteins, EDF1 has a pivotal role in the maintenance of endothe-
lial integrity and may be a link to endothelial dysfunctions described 
for COVID-1924,25. Profound regulation of cellular signaling pathways 
was also observed at the phosphoproteomic level: among 16 399 total 
quantified phosphorylation sites, 4  643 showed significant changes 
after SARS-CoV-2 or SARS-CoV infection (Extended data Fig. 5b, c; Sup-
plementary Table 7). Highly regulated sites were identified for the 
proteins of the MAPK pathways (e.g. MAPKAPK2, MAP2K1, JUN, SRC) 
together with proteins involved in autophagy signaling (e.g. DEPTOR, 
RICTOR, OPTN, SQSTM1, LAMTOR1) and viral entry (e.g. ACE2, RAB7A) 
(Extended data Fig. 5b, d). Notably, RAB7A was recently shown to be 
an important host factor for SARS-CoV-2 infection that assists endo-
somal trafficking of ACE2 to the plasma membrane26. Simultaneously, 
we observed significantly higher phosphorylation at S72 of RAB7A in 
SARS-CoV-2 infection compared to SARS-CoV or mock, a site impli-
cated in its intracellular localization and molecular association27. The 
regulation of known phosphosites suggests an involvement of central 
kinases (CDKs, AKT, MAPKs, ATM, and CHEK1) linked to cell survival, 
cell cycle progression, cell growth and motility, stress responses and 
the DNA damage response, which was also supported by the analysis of 
enriched motifs (Extended data Fig. 5e, f; Supplementary Tables 7 - 8). 
Notably, only SARS-CoV-2 but not SARS-CoV led to phosphorylation 
of the antiviral kinase EIF2AK2/PKR at the critical regulatory residue 
S3328. This differential activation of EIF2AK2/PKR could contribute 
to the difference in growth kinetics of the two SARS viruses (Supple-
mentary Table 4, 5).

Our data clearly point to an interplay of phosphorylation and ubiq-
uitination patterns on individual host proteins. EGFR, for instance, 
showed increased ubiquitination on six lysine residues at 24 hours 
post-infection (h.p.i.) accompanied by increased phosphorylation 
of T693, S695 and S991 after 24 and 36 hours (Figure 2e, f). Ubiquit-
ination of all six lysine residues on EGFR was more pronounced upon 
SARS-CoV-2 infection. Moreover, vimentin, a central co-factor for coro-
navirus entry29 and pathogenicity30,31, displayed distinct phosphoryla-
tion and ubiquitination patterns on several sites early (e.g. S420) or 
late (e.g. S56, S72, K334) in infection (Extended data Fig. 6a, b). These 
discoveries underscore the value of testing different post-translational 
modifications simultaneously and suggest a concerted engagement 
of regulatory machineries to modify target protein’s functions and 
abundance.

PTMs on viral proteins
The majority of viral proteins were also post-translationally modified. 
Of the 27 detected SARS coronavirus proteins, 21 were ubiquitinated, 
among which N, S, NSP2, and NSP3 were the most frequently modi-
fied proteins in both viruses (Extended data Fig. 6c, Supplementary 
Table 6). Many of these ubiquitination sites were shared between the 
two viruses. Around half of the sites specifically regulated in either 
of the two viruses were conserved but differentially ubiquitinated, 
while the other half was encoded by either of the two pathogens, indi-
cating that such acquired adaptations are also post-translationally 
modified and could recruit cellular proteins with appropriate functions 
(Figure 3a). Our interactome data identified several host E3 ligases 
(e.g. SARS-CoV-2 ORF3 with TRIM47, WWP1/2, STUB1; M and TRIM7; 
NSP13 and RING1) and deubiquitinating enzymes (e.g. SARS-CoV-2 
ORF3 with USP8; ORF7a with USP34; SARS-CoV N with USP9X) and 
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likely indicate a crosstalk between ubiquitination and viral protein 
functions (Figure 1b, Extended data Fig. 6d, Supplementary Table 2). 
Of particular interest are extensive ubiquitination events on the spike 
protein S of both viruses (K97, K528, K825, K835, K921 and K947) distrib-
uted on functional domains (N-terminal domain, C-terminal domain, 
fusion peptide and Heptad repeat 1 domain) potentially indicating 
critical regulatory functions that are conserved among the two viruses 
(Extended data Fig. 6e). Mapping of the phosphorylation events iden-
tified 5 SARS-CoV-2 (M, N, S, NSP3, ORF9b) and 8 SARS-CoV (M, N, S, 
NSP1, NSP2, NSP3, ORF3 and ORF9b) proteins to be phosphorylated 
(Extended data Fig. 6f, Supplementary Table 7), which corresponds 
to known recognition motifs. In particular, CAMK4 and MAPKAPK2 
potentially phosphorylate sites on S and N, respectively. Inferred from 
phosphorylation of cellular proteins, the activities of these kinases 
were enriched in SARS-CoV-2 and SARS-CoV infected cells (Extended 
data Fig. 5e, f, 6e, g). Moreover, N proteins of both SARS coronaviruses 
recruit GSK3, which could potentially be linked to phosphorylation 
events on these viral proteins (Figure 1b, Extended data Fig. 6g, Sup-
plementary Table 7). Particularly interesting are newly identified 
post-translationally modified sites located at functional domains of 
viral proteins. We identified SARS-CoV-2 N K338 ubiquitination and 
SARS-CoV-2/SARS-CoV N S310/311 phosphorylation (Extended data 
Fig. 6g). Mapping those sites to the atomic structure of the C-terminal 
domain (CTD)32,33 highlights critical positions for the functionality of 
the protein (Figure 3c, Extended data Fig. 6h, Supplementary discus-
sion 2). Collectively, while the identification of differentially regulated 
sites may indicate pathogen-specific functions, insights gleaned from 
conserved post-translational modifications provide useful knowledge 
for the development of targeted pan-antiviral therapies.

Viral perturbation of key cellular pathways
Our unified experimental design in a syngeneic system permitted 
direct time-resolved comparison of SARS-CoV-2 and SARS-CoV infec-
tion across different levels. Integrative pathway enrichment analysis 
demonstrated that both viruses largely perturb the same cellular 
processes at multiple levels albeit with varying temporal patterns 
(Extended data Fig. 7a). Transcriptional downregulation of proteins 
involved in tau-protein kinase activity and iron ions sequestration 
at 6 h.p.i., for instance, was followed by a decrease in protein abun-
dance after 12 h.p.i. (Supplementary Table 8). RHO GTPase activation, 
mRNA processing and role of ABL in ROBO-SLIT signaling appeared 
to be regulated mostly through phosphorylation (Extended data 
Fig. 7a). In contrast, processes connected to cellular integrity such 
as the formation of senescence-associated heterochromatin foci, 
apoptosis-induced DNA fragmentation and amino acid transport 
across the plasma membrane were modulated through concomitant 
phosphorylation and ubiquitination events, providing insights into 
the molecular relationships of these post-translational modifications. 
Ion transporters, especially the SLC12 family (cation-coupled chloride 
cotransporters), previously identified as cellular factors in pulmonary 
inflammation34, were also regulated at multiple levels, evidenced by 
reduced protein abundance as well as differential post-translational 
modifications (Extended data Fig. 7a).

The pathway enrichment analysis provided a global and compre-
hensive picture of how SARS-CoV-2 and SARS-CoV affect the host. We 
next applied an automated approach to systematically explore the 
underlying molecular mechanisms contained in the viral interactome 
and effectome data. We mapped the measured interactions and effects 
of each viral protein onto the global network of cellular interactions35 
and applied a network diffusion approach36 (Figure 4a). Such analysis 
utilizes known cellular protein-protein interactions, signaling and regu-
lation events to identify connection points between the interactors of 
the viral protein and the proteins affected by its expression (Extended 
data Fig. 1b, 2d, Supplementary Tables 2, 3). The connections inferred 

from the real data were significantly shorter than for randomized data, 
confirming both the relevance of the approach and the data quality 
(Extended data Fig. 8a, b). Amongst many other findings, this approach 
pointed towards the potential mechanisms of autophagy regulation 
by ORF3 and NSP6; the modulation of innate immunity by M, ORF3 
and ORF7b; and the Integrin-TGF-β-EGFR-RTK signaling perturbation 
by ORF8 of SARS-CoV-2 (Figure 4b, Extended data Fig. 8c, d). Enrich-
ing these subnetworks with SARS-CoV-2 infection-dependent mRNA 
abundance, protein abundance, phosphorylation and ubiquitination 
(Figure 4a) provided novel insights into the regulatory mechanisms 
employed by SARS-CoV-2. For instance, this analysis confirmed a role 
of NSP6 in autophagy37 and revealed the inhibition of autophagic 
flux by ORF3 protein, unique to SARS-CoV-2, leading to the accumu-
lation of autophagy receptors (SQSTM1, GABARAP(L2), NBR1, CAL-
COCO2, MAP1LC3A/B, TAX1BP1), also observed in virus-infected cells 
(MAP1LC3B) (Figure 4c, Extended data Fig. 8e, f). This inhibition may 
be due to the interaction of the ORF3 protein with the HOPS complex 
(VPS11, -16, -18, -39, -41), which is essential for autophagosome-lysosome 
fusion, as well as by the differential phosphorylation of regulatory sites 
(e.g. on TSC2, mTORC1 complex, ULK1, RPS6, SQSTM1) and ubiquitina-
tion of key components (MAP1LC3A, GABARAP(L2), VPS33A, VAMP8) 
(Figure 4c, Extended data Fig. 8g). This inhibition of autophagosome 
function may have direct consequences for protein degradation. 
The abundance of APOB, a protein degraded via autophagy38, was 
selectively increased after SARS-CoV-2 infection or expression of the 
SARS-CoV-2 ORF3 (Extended data Fig. 3b, 8h). Accumulating APOB 
levels could exacerbate the risk of arterial thrombosis39, one of the 
main complications contributing to lung, heart and kidney failure in 
COVID-19 patients40. The inhibition of the IFN-α/β response observed 
at transcriptional and proteome levels was similarly explained by the 
network diffusion analysis (Extended data Fig. 8i), which implicated 
multiple proteins of SARS-CoV-2 in the disruption of antiviral immunity. 
Additional experiments functionally corroborated the inhibition of 
IFN-α/β induction or signaling by ORF3, ORF6, ORF7a, ORF7b, ORF9b 
(Extended data Fig. 8j). Upon virus infection, we observed the regula-
tion of TGF-β and EGFR pathways modulating cell survival, motility and 
innate immune responses (Extended data Fig. 9a - d). Specifically, our 
network diffusion analysis revealed a connection between the binding 
of the ORF8 and ORF3 proteins to TGF-β-associated factors (TGFB1, 
TGFB2, LTBP1, TGFBR2, FURIN, BAMBI), the differential expression of 
ECM regulators (FERMT2, CDH1) and the virus-induced upregulation 
of fibrinogens (FGA, FGB), fibronectin (FN1) and SERPINE1 (Extended 
data Fig. 9a, b)41. The increased phosphorylation of proteins involved in 
MAPK (e.g. SHC1-S139, SOS1-S1134/1229, JUN-S63/S73, MAPKAPK2-T334, 
p38-T180/Y182) and receptor tyrosine kinase signaling (e.g. phospho-
rylation of PI3K complex members, PDPK1 (S241) and RPS6KA1 (S380)) 
as well as a higher expression of JUN, FOS and EGR1 are further indicative 
of TGF-β and EGFR pathways regulation (Extended data Fig. 9a, c, d). In 
turn, TGF-β and EGFR signaling are known to be potentiated by integrin 
signaling and activation of YAP-dependent transcription42, which we 
observed to be regulated in a time-dependent manner upon SARS-CoV-2 
infection (Extended data Fig. 9a). Besides promoting virus replication, 
activation of these pathways has been implicated in fibrosis13–15, one of 
the hallmarks of COVID-1916.

Data-guided drug identification and testing
Taken together, the viral-host protein-protein interactions and path-
way regulations observed at multiple levels identify potential vulner-
ability points of SARS-CoV and SARS-CoV-2 that we decided to target 
by well-characterized selective drugs for antiviral therapies. To test 
antiviral efficacy, we established time-lapse fluorescent microscopy of 
SARS-CoV-2 GFP-reporter virus infection43. Inhibition of virus replica-
tion by IFN-α/β treatment corroborated previous conclusions that effi-
cient SARS-CoV-2 replication involves an inactivation of this pathway at 
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an early step and confirmed the reliability of this screening approach 
(Extended data Fig. 10a)9,44. We tested a panel of 48 drugs modulating 
the pathways perturbed by the virus for their effects on SARS-CoV-2 rep-
lication (Figure 5a, Supplementary Table 9). Notably, B-RAF (Sorafenib, 
Regorafenib, Dabrafenib), JAK1/2 (Baricitinib) and MAPK (SB 239063) 
inhibitors, which are commonly used to treat cancer and autoimmune 
diseases45–47 led to a significant increase of virus growth in our in vitro 
infection setting (Figure 5a, Extended data Fig. 10b, Supplementary 
Table 9). In contrast, inducers of DNA damage (Tirapazamine, Rabu-
sertib) or a mTOR inhibitor (Rapamycin) led to suppression of virus 
growth. The highest antiviral activity was observed for Gilteritinib (a 
designated FLT3/AXL inhibitor), Ipatasertib (AKT inhibitor), Prino-
mastat and Marimastat (matrix metalloproteases (MMPs) inhibitors) 
(Figure 5a, b, Extended data Fig. 10c, Supplementary Table 9). These 
compounds profoundly inhibited replication of SARS-CoV-2 while 
having no or minor effects on cell growth (Extended data Fig. 10b, Sup-
plementary Table 9). Quantitative PCR analysis indicated antiviral 
activities for Gilteritinib and Tirapazamine against SARS-CoV-2 and 
SARS-CoV (Figure 5c, Extended data Fig. 10d, e). Notably, Prinomas-
tat and Marimastat, specific inhibitors of MMP-2 and MMP-9, showed 
selective activity against SARS-CoV-2 but not against SARS-CoV (Fig-
ure 5c, Extended data Fig. 10f, g). MMPs activities have been linked to 
TGF-β activation and pleural effusions, alveolar damage and neuroin-
flammation (e.g. Kawasaki disease), all of which are characteristics of 
COVID-1923,48–51.

This drug screen demonstrates the value of our combined dataset 
that profiles SARS-CoV-2 infection at multiple levels. We hope that 
further exploration of these rich data by the scientific community 
and additional studies of the interplay between different omics levels 
will substantially advance our molecular understanding of coronavi-
ruses biology, including the pathogenicity associated with specific 
human coronaviruses, such as SARS-CoV-2 and SARS-CoV. Moreover, 
this resource, together with complementary approaches by the com-
munity26,52–54, will streamline the search for antiviral compounds and 
serve as a base for rational design of combination therapies that tar-
get the virus from multiple synergistic angles, thus potentiating the 
effect of individual drugs while minimizing potential side-effects on 
healthy tissues.
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Fig. 1 | Joint analysis of SARS-CoV-2 and SARS-CoV protein-protein 
virus-host interactomes. (a) Systematic comparison of interactomes and host 
proteome changes (“effectomes”) of the homologous SARS-CoV-2 and 
SARS-CoV viral proteins, with ORF3 homologs of HCoV-NL63 and HCoV-229E as 
reference for pan-coronavirus specificity. (b) Combined virus-host protein 
interaction network of SARS-CoV-2 and SARS-CoV measured by AP-MS. 

Homologous viral proteins are displayed as a single node. Shared and 
virus-specific interactions are denoted by the edge color. The edge color 
gradient reflects the p-value of the interaction. (c) The numbers of unique and 
shared host interactions between the homologous proteins of SARS-CoV-2 and 
SARS-CoV. AP-MS: affinity-purification coupled to mass spectrometry; MD: 
Macro domain; NSP: Non-structural protein.
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Fig. 2 | Multi-level profiling of SARS-CoV-2 and SARS-CoV infection. (a) 
Time-resolved profiling of parallel SARS-CoV-2 and SARS-CoV infection by 
multiple omics methods. The plot shows the MS intensity estimates for spike 
proteins of SARS-CoV-2 and SARS-CoV over time (n=4 independent 
experiments). (b) The numbers of distinct transcripts, proteins, ubiquitination 
and phosphorylation sites, significantly up- or downregulated at given time 
points after the infection (in comparison to the mock samples at the same time 
point). Color denotes transcripts/proteins/sites that are regulated similarly by 
SARS-CoV-2 and SARS-CoV infection (grey), or specifically by SARS-CoV-2 
(orange) or SARS-CoV (brown). (c-d) Scatter plots comparing the host 
transcriptome and ubiquitinome respectively of SARS-CoV-2 (x-axis) and 
SARS-CoV ( y-axis) infection at the indicated time after infection 
(log2 fold change in comparison to the mock infection samples at the same time 
point). Significantly regulated transcripts/sites (moderated t-test 

FDR-corrected two-sided p-value ≤ 0.05 (c), Bayesian linear model-based 
unadjusted two-sided p-value ≤ 10-3, |log2 fold change| ≥ 0.5 (d), n=3 
independent experiments), are colored according to their specificity in both 
infections. Diamonds indicate that the actual log2 fold change was truncated to 
fit into the plot. (e) Phosphorylation (purple square) and ubiquitination (red 
circle) sites on epidermal growth factor receptor (EGFR) regulated upon 
SARS-CoV-2 infection. The plot shows median log2 fold changes of site 
intensities compared to mock at 24 and 36 h.p.i. Regulatory sites are indicated 
with a thick black border. (f) Profile plots of time-resolved EGFR K754 
ubiquitination, T693 and S991 phosphorylation, and total protein levels in 
SARS-CoV-2 or SARS-CoV-infected A549-ACE2 cells, with indicated median, 
50% and 95% confidence intervals. n=3 (ubiquitination) or 4 (phosphorylation, 
total protein level) independent experiments. h.p.i.: hours post-infection.
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Fig. 3 | Integration of data from SARS-CoV-2 and SARS-CoV infection 
identifies coordinated regulation between omics layers. (a) Venn diagram 
presenting the distribution of all identified shared, differentially regulated and 
selectively encoded (sequence-specific) ubiquitination and phosphorylation 
sites on SARS-CoV-2 and SARS-CoV homologous proteins as measured after 
infection of A549-ACE2 cells. (b) Mapping of the ubiquitination (red circle) and 
phosphorylation (purple square) sites of SARS-CoV-2 ORF3 / SARS-CoV ORF3a 
proteins on their aligned sequence with median log2 intensities in A549-ACE2 
cells infected with the respective virus at 24 h.p.i. Functional (blue) and 
topological (yellow) domains are mapped on each sequence. Binding of 
ubiquitin modifying enzymes to ORF3/ORF3a as identified in our AP-MS 

experiments (Extended data Fig. 1b) are indicated (green). . (c) Surface and 
ribbon representation of superimposed SARS-CoV (PDB: 2CJR, brown) and 
SARS-CoV-2 (PDB: 6YUN, orange) N CTD dimers (r.m.s.d. values of 0.492 Å for 
matching 108 Cα atoms). Side chains are colored in red, purple or grey as they 
belong to ubiquinated, phosphorylated or unmodified sites respectively. K338 
ubiquitination site unique to SARS-CoV-2 is shown as close-up for both 
monomers (lower). Close-ups of inter-chain residue interactions established by 
non-phosphorylated (upper) and phosphorylated (center) SARS-CoV-2 S310/
SARS-CoV S311. CTD: C-terminal domain; hACE2: binding site of human ACE2; 
FP: fusion peptide; HR1/2: Heptad region 1/2; CP: cytoplasmic region. CoV2 
Cleav.: SARS-CoV-2 cleavage sites; r.m.s.d.: root-mean-square deviation.
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Fig. 4 | Network diffusion approach identifies molecular pathways linking 
protein-protein interactions with downstream changes in the host 
proteome. (a) Network diffusion approach to identify functional connections 
between the host targets of a viral protein and downstream proteome changes. 
The results of network diffusion are integrated with omics datasets of SARS 
coronavirus infection to streamline the identification of affected host 
pathways. (b) Subnetworks of the network diffusion predictions linking host 
targets of SARS-CoV-2 ORF3 to the factors involved in autophagy. The thickness 
of directed edges is proportional to the random walk transition probability. 
Black edges denote the connections present in ReactomeFI. (c) Overview of 
perturbations to host-cell autophagy induced by SARS-CoV-2. The pathway 
regulation is derived from the network diffusion model of SARS-CoV-2 ORF3 
and NSP6 and overlaid with the changes in protein levels, ubiquitination and 
phosphorylation induced by SARS-CoV-2 infection.
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Fig. 5 | SARS-CoV-2-targeted pathways, as revealed by a multi-omics 
profiling approach, allow systematic testing of candidate antiviral 
therapies. (a) A549-ACE2 cells were treated with the indicated drugs 6 hours 
prior to infection with SARS-CoV-2-GFP (MOI 3). Scatter plot shows cell viability 
changes (x-axis, confluence log2 fold change in uninfected cells) and virus 
growth changes ( y-axis, normalized GFP area log2 fold change in SARS-CoV-
2-GFP-infected cells) of drug-treated in comparison to non-treated A549-ACE2 
cells at 48 h.p.i. A confluence cutoff of -0.2 log2 fold change was applied to 
remove cytotoxic compounds. (b) shows time-courses of virus replication 
after Prinomastat or Gilteritinib pre-treatment. Asterisk indicates the 
significance in comparison to the control treatment (n=4 independent 
experiments, Wilcoxon test; unadjusted two-sided p-value ≤ 0.01). (c) Drugs 
potentially targeting pathways identified in our study. Color indicates antiviral 
activity against SARS-CoV-2/SARS-CoV (brown-orange gradient) or 
SARS-CoV-2 specifically (orange) as inferred from in vitro experiments. MOI: 
multiplicity of infection; h.p.i.: hours post-infection.
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Methods

Cell lines and reagents
HEK293T, A549, Vero E6 and HEK293-R1 cells and their respective 
culturing conditions were described previously55. All cell lines were 
tested to be mycoplasma-free. Expression constructs for C-terminal 
HA tagged viral ORFs were synthesized (Twist Bioscience and BioCat) 
and cloned into pWPI vector as described previously56 with the follow-
ing modifications: starting ATG codon was added, internal canonical 
splicing sites were replaced with synonymous mutations and C-terminal 
HA-tag, followed by amber stop codon, was added to individual viral 
open reading frames. C-terminally hemagglutinin(HA)-tagged ACE2 
sequence was amplified from an ACE2 expression vector (kindly pro-
vided by Stefan Pöhlmann)57 into the lentiviral vector pWPI-puro. A549 
cells were transduced twice, and ACE2-expressing A549 (A549-ACE2) 
cells were selected with puromycin. Lentiviruses production, trans-
duction of cells and antibiotic selection were performed as described 
previously52. RNA-isolation (Macherey-Nagel NucleoSpin RNA plus), 
reverse transcription (TaKaRa Bio PrimeScript RT with gDNA eraser) 
and RT-qPCR (Thermo-Fisher Scientific PowerUp SYBR green) were per-
formed as described previously54. RNA-isolation for NGS applications 
was performed according to manufacturer’s protocol (Qiagen RNeasy 
mini kit, RNase free DNase set). For detection of protein abundance by 
western blotting, HA-HRP (Sigma-Aldrich; H6533; 1:2500 dilution), 
ACTB-HRP (Santa Cruz; sc-47778; 1:5000 dilution), MAP1LC3B (Cell 
Signaling; 3868; 1:1000 dilution), MAVS (Cell Signaling; 3993; 1:1000 
dilution), HSPA1A (Cell Signaling; 4873; 1:1000 dilution), TGFβ (Cell 
Signaling; 3711; 1:1000 dilution), phospho-p38 (T180/Y182) (Cell Signal-
ing; 4511; 1:1000 dilution), p38 (Cell Signaling; 8690; 1:1000 dilution) 
and SARS-CoV-2/SARS-CoV N protein (Sino Biological; 40143-MM05; 
1:1000 dilution) antibodies were used Secondary antibodies detecting 
mouse (Cell Signaling; 7076; 1:5000 dilution/Jackson ImmunoResearch; 
115-035-003; 1:5000 dilution), rat (Invitrogen; 31470; 1:5000 dilution), 
and rabbit IgG (Cell Signaling; 7074; 1:5000 dilution) were horserad-
ish peroxidase (HRP)-coupled. For AP-MS and AP-WB applications, 
HA-beads (Sigma-Aldrich and Thermo Fisher Scientific) and Streptac-
tin II beads (IBA Lifesciences) were used. WB imaging was performed 
as described previously58. For the stimulation of cells in the reporter 
assay, recombinant human IFN-α was a kind gift from Peter Stäheli, 
recombinant human IFN-γ were purchased from PeproTech and IVT4 
was produced as described before59. All compounds tested during the 
viral inhibitor assay are listed in Supplementary Table 9.

Virus strains, stock preparation, plaque assay and in vitro 
infection
SARS-CoV-Frankfurt-1, SARS-CoV-2-MUC-IMB-1 and SARS-CoV-2-GFP 
strains43 were produced by infecting Vero E6 cells cultured in DMEM 
medium (10% FCS, 100 ug/ml Streptomycin, 100 IU/ml Penicil-
lin) for 2 days (MOI 0.01). Viral stock was harvested and spun twice 
(1000g/10min) before storage at -80 °C. Titer of viral stock was deter-
mined by plaque assay. Confluent monolayers of VeroE6 cells were 
infected with serial five-fold dilutions of virus supernatants for 1 hour 
at 37 °C. The inoculum was removed and replaced with serum-free 
MEM (Gibco, Life Technologies) containing 0.5% carboxymethylcel-
lulose (Sigma-Aldrich). Two days post-infection, cells were fixed for 20 
minutes at room temperature with formaldehyde directly added to the 
medium to a final concentration of 5%. Fixed cells were washed exten-
sively with PBS before staining with H2O containing 1% crystal violet 
and 10% ethanol for 20 minutes. After rinsing with PBS, the number of 
plaques was counted and the virus titer was calculated.

A549-ACE2 cells were infected with either SARS-CoV-Frankfurt-1 
or SARS-CoV-2-MUC-IMB-1 strains (MOI 2) for the subsequent experi-
ments. At each time point, the samples were washed once with 1x TBS 
buffer and harvested in SDC lysis buffer (100 mM Tris HCl pH 8.5; 
4% SDC) or 1x SSB lysis buffer (62.5 mM Tris HCl pH 6.8; 2% SDS; 10% 

glycerol; 50 mM DTT; 0.01% bromophenol blue) or RLT (Qiagen) for 
proteome-phosphoproteome-ubiquitinome, western blot, and tran-
scriptome analyses, respectively. The samples were heat-inactivated 
and frozen at -80 °C until further processing, as described in the fol-
lowing sections.

Affinity purification and mass spectrometric analyses of 
SARS-CoV-2, SARS-CoV and HCoV-229E/NL63 proteins 
expressed in A549 cells
To determine the interactomes of SARS-CoV-2 and SARS-CoV and 
the interactomes of an accessory protein (encoded by ORF4/ORF4a 
of HCoV-229E or ORF3 of HCoV-NL63) that presumably represents a 
homolog of the ORF3 and ORF3a proteins of SARS-CoV-2 and SARS-CoV, 
respectively, four replicate affinity purifications were performed for 
each HA-tagged viral protein. A549 cells (6×106 cells per 15-cm dish) were 
transduced with lentiviral vectors encoding HA-tagged SARS-CoV-2, 
SARS-CoV or HCoV-229E/NL63 proteins and protein lysates were pre-
pared from cells harvested three days post-transduction. Cell pellets of 
two 15-cm dishes were lysed in lysis buffer (50 mM Tris-HCl pH 7.5, 100 
mM NaCl, 1.5 mM MgCl2, 0.2% (v/v) NP-40, 5% (v/v) glycerol, cOmplete 
protease inhibitor cocktail (Roche), 0.5% (v/v) 750 U/µl Sm DNAse) and 
sonicated (5 min, 4 °C, 30 sec on, 30 sec off, low settings; Bioruptor, 
Diagenode SA). Following normalization of protein concentrations of 
cleared lysates, virus protein-bound host proteins were enriched by 
adding 50 µl anti-HA-agarose slurry (Sigma-Aldrich, A2095) with con-
stant agitation for 3 hours at 4 °C. Non-specifically bound proteins were 
removed by four subsequent washes with lysis buffer followed by three 
detergent-removal steps with washing buffer (50 mM Tris-HCl pH 7.5, 
100 mM NaCl, 1.5 mM MgCl2, 5% (v/v) glycerol). Enriched proteins were 
denatured, reduced, alkylated and digested by addition of 200 µl diges-
tion buffer (0.6 M guanidinium chloride, 1 mM TCEP, 4 mM CAA, 100 mM 
Tris-HCl pH 8, 0.5 µg LysC (WAKO Chemicals), 0.5 µg trypsin (Promega) 
at 30 °C overnight. Peptide purification on StageTips with three layers 
of C18 Empore filter discs (3M) and subsequent mass spectrometry 
analysis was performed as described previously55,56. Briefly, purified 
peptides were loaded onto a 20 cm reverse-phase analytical column 
(75 µm diameter; ReproSil-Pur C18-AQ 1.9 µm resin; Dr. Maisch) and 
separated using an EASY-nLC 1200 system (Thermo Fisher Scientific). 
A binary buffer system consisting of buffer A (0.1% formic acid in H2O) 
and buffer B (80% acetonitrile, 0.1% formic acid in H2O) with a 90 min 
gradient (5-30% buffer B (65 min), 30-95% buffer B (10 min), wash out 
at 95% buffer B (5 min), decreased to 5% buffer B (5 min), and 5% buffer 
B (5 min)) was used at a flow rate of 300 nl per min. Eluting peptides 
were directly analysed on a Q-Exactive HF mass spectrometer (Thermo 
Fisher Scientific). Data-dependent acquisition included repeating 
cycles of one MS1 full scan (300–1 650 m/z, R = 60 000 at 200 m/z) at 
an ion target of 3×106, followed by 15 MS2 scans of the highest abundant 
isolated and higher-energy collisional dissociation (HCD) fragmented 
peptide precursors (R = 15 000 at 200 m/z). For MS2 scans, collection 
of isolated peptide precursors was limited by an ion target of 1×105 
and a maximum injection time of 25 ms. Isolation and fragmentation 
of the same peptide precursor was eliminated by dynamic exclusion 
for 20 s. The isolation window of the quadrupole was set to 1.4 m/z and 
HCD was set to a normalized collision energy of 27%.

Proteome analyses of cells expressing SARS-CoV-2, SARS-CoV 
and HCoV-229E/NL63 proteins
For the determination of proteome changes in A549 cells expressing 
SARS-CoV-2, SARS-CoV or HCoV-229E/NL63 proteins, a fraction of 
1×106 lentivirus-transduced cells from the affinity purification sam-
ples were lysed in guanidinium chloride buffer (6 M GdmCl, 10 mM 
TCEP, 40 mM CAA, 100 mM Tris-HCl pH 8), boiled at 95 °C for 8 min 
and sonicated (10 min, 4 °C, 30 sec on, 30 sec off, high settings). Pro-
tein concentrations of cleared lysates were normalized to 50 µg and 
proteins were pre-digested with 1 µg LysC at 37 °C for 1 hour followed 
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by a 1:10 dilution (100 mM Tris-HCl pH 8) and overnight digestion with 1 
µg trypsin at 30 °C. Peptide purification on StageTips with three layers 
of C18 Empore filter discs (3M) and subsequent mass spectrometry 
analysis was performed as described previously55,56. Briefly, 300 ng of 
purified peptides were loaded onto a 50 cm reversed phase column  
(75 μm inner diameter, packed in house with ReproSil-Pur C18-AQ 1.9 μm  
resin [Dr. Maisch GmbH]). The column temperature was maintained 
at 60 °C using a homemade column oven. A binary buffer system, con-
sisting of buffer A (0.1% formic acid (FA)) and buffer B (80% ACN, 0.1% 
FA), was used for peptide separation, at a flow rate of 300 nl/min. An 
EASY-nLC 1200 system (Thermo Fisher Scientific), directly coupled 
online with the mass spectrometer (Q Exactive HF-X, Thermo Fisher 
Scientific) via a nano-electrospray source, was employed for nano-flow 
liquid chromatography. Peptides were eluted by a linear 80 min gradi-
ent from 5% to 30% buffer B (0.1% v/v formic acid, 80% v/v acetonitrile), 
followed by a 4 min increase to 60% B, a further 4 min increase to 95% B, 
a 4 min plateau phase at 95% B, a 4 min decrease to 5% B and a 4 min wash 
phase of 5% B. To acquire MS data, the data-independent acquisition 
(DIA) scan mode operated by the XCalibur software (Thermo Fisher) 
was used. DIA was performed with one full MS event followed by 33 
MS/MS windows in one cycle resulting in a cycle time of 2.7 seconds. 
The full MS settings included an ion target value of 3×106 charges in 
the 300 – 1 650 m/z range with a maximum injection time of 60 ms and 
a resolution of 120 000 at m/z 200. DIA precursor windows ranged 
from 300.5 m/z (lower boundary of first window) to 1 649.5 m/z (upper 
boundary of 33rd window). MS/MS settings included an ion target value 
of 3×106 charges for the precursor window with an Xcalibur-automated 
maximum injection time and a resolution of 30 000 at m/z 200.

To generate the proteome library for DIA measurements purified 
peptides from the first and the fourth replicates of all samples were 
pooled separately and 25 µg of peptides from each pool were fraction-
ated into 24 fractions by high pH reversed-phase chromatography as 
described earlier60. During each separation, fractions were concat-
enated automatically by shifting the collection tube every 120 seconds. 
In total 48 fractions were dried in a vacuum centrifuge, resuspended 
in buffer A* (0.2% TFA, 2% ACN) and subsequently analyzed by a top12 
data-dependent acquisition (DDA) scan mode using the same LC gradi-
ent and settings. The mass spectrometer was operated by the XCalibur 
software (Thermo Fisher). DDA scan settings on full MS level included 
an ion target value of 3×106 charges in the 300 – 1 650 m/z range with 
a maximum injection time of 20 ms and a resolution of 60 000 at m/z 
200. At the MS/MS level the target value was 105 charges with a maxi-
mum injection time of 60 ms and a resolution of 15 000 at m/z 200. 
For MS/MS events only, precursor ions with 2-5 charges that were not 
on the 20 s dynamic exclusion list were isolated in a 1.4 m/z window. 
Fragmentation was performed by higher-energy C-trap dissociation 
(HCD) with a normalized collision energy of 27eV.

Infected time-course proteome-phosphoproteome-diGly 
proteome sample preparation
Frozen lysates of infected A549-ACE2 cells harvested at 6, 12 and 24 
hours (also 36 hours only in phosphoproteomics study) post-infection 
were thawed on ice, boiled for 5 min at 95 °C and sonicated for 15 min 
(Branson Sonifierer). Protein concentrations were estimated by trypto-
phan assay61. To reduce and alkylate proteins, samples were incubated 
for 5 min at 45 °C with TCEP (10 mM) and CAA (40 mM). Samples were 
digested overnight at 37 °C using trypsin (1:100 w/w, enzyme/protein, 
Sigma-Aldrich) and LysC (1:100 w/w, enzyme/protein, Wako).For pro-
teome analysis, 10 µg of peptide material were desalted using SDB-RPS 
StageTips (Empore)61. Briefly, samples were diluted with 1% TFA in 
isopropanol to a final volume of 200 µl and loaded onto StageTips, 
subsequently washed with 200 µl of 1% TFA in isopropanol and 200 µl 
0.2% TFA/ 2% ACN. Peptides were eluted with 75 µl of 1.25% Ammonium 
hydroxide (NH4OH) in 80% ACN and dried using a SpeedVac centrifuge 
(Eppendorf, Concentrator plus). They were resuspended in buffer A* 

(0.2% TFA/ 2% ACN) prior to LC-MS/MS analysis. Peptide concentra-
tions were measured optically at 280 nm (Nanodrop 2000, Thermo 
Scientific) and subsequently equalized using buffer A*. 1µg peptide 
was subjected to LC-MS/MS analysis.

The rest of the samples was four-fold diluted with 1% TFA in isopro-
panol and loaded onto SDB-RPS cartridges (Strata™-X-C, 30 mg/ 3 ml, 
Phenomenex Inc), pre-equilibrated with 4 ml 30% MeOH/1% TFA and 
washed with 4 ml 0.2% TFA. Samples were washed twice with 4 ml 1% 
TFA in isopropanol, once with 0.2% TFA/ 2% ACN and eluted twice with 
2 ml 1.25% NH4OH/ 80% ACN. Eluted peptides were diluted with ddH2O 
to a final ACN concentration of 35%, snap frozen and lyophilized.

For phosphopeptide enrichment, lyophilized peptides were resus-
pended in 105 µl of equilibration buffer (1% TFA/ 80% ACN) and the 
peptide concentration was measured optically at 280nm (Nanodrop 
2000, Thermo Scientific) and subsequently equalized using equili-
bration buffer. The AssayMAP Bravo robot (Agilent) performed the 
enrichment for phosphopeptides (150µg) by priming AssayMAP car-
tridges (packed with 5 µl Fe(III)-NTA) with 0.1% TFA in 99% ACN fol-
lowed by equilibration in equilibration buffer and loading of peptides. 
Enriched phosphopeptides were eluted with 1% Ammonium hydroxide, 
which was evaporated by Speedvac’ing samples for 20 minutes. Dried 
peptides were resuspended in 6 µl buffer A* and 5 µl was subjected to 
LC-MS/MS analysis.

For diGly peptide enrichment, lyophilized peptides were reconstituted 
in IAP buffer (50 mM MOPS, pH 7.2, 10 mM Na2HPO4, 50 mM NaCl) and 
the peptide concentration was estimated by tryptophan assay. K-ɛ-GG 
remnant containing peptides were enriched using the PTMScan® Ubiq-
uitin Remnant Motif (K-ɛ-GG) Kit (Cell Signaling Technology). Crosslink-
ing of antibodies to beads and subsequent immunopurification was 
performed with slight modifications as previously described62. Briefly, 
two vials of crosslinked beads were combined and equally split into 16 
tubes (~31 µg of antibody per tube). Equal peptide amounts (600 µg)  
were added to crosslinked beads and the volume was adjusted with IAP 
buffer to 1 ml. After 1 hour of incubation at 4 °C and gentle agitation, 
beads were washed twice with cold IAP and 5 times with cold ddH2O. 
Thereafter, peptides were eluted twice with 50 µl 0.15% TFA. Eluted 
peptides were desalted and dried as described for proteome analysis 
with the difference that 0.2% TFA instead of 1%TFA in isopropanol was 
used for the first wash. Eluted peptides were resuspended in 9 µl buffer 
A* and 4 µl was subjected to LC-MS/MS analysis.

DIA Measurements
Samples were loaded onto a 50 cm reversed phase column (75 μm 
inner diameter, packed in house with ReproSil-Pur C18-AQ 1.9 μm resin 
[Dr. Maisch GmbH]). The column temperature was maintained at 60 °C 
using a homemade column oven. A binary buffer system, consisting of 
buffer A (0.1% formic acid (FA)) and buffer B (80% ACN plus 0.1% FA) was 
used for peptide separation, at a flow rate of 300 nl/min. An EASY-nLC 
1 200 system (Thermo Fisher Scientific), directly coupled online with 
the mass spectrometer (Orbitrap Exploris 480, Thermo Fisher Sci-
entific) via a nano-electrospray source, was employed for nano-flow 
liquid chromatography. The FAIMS device was placed between the 
nanoelectrospray source and the mass spectrometer and was used for 
measurements of the proteome and the PTM-library samples. Spray 
voltage was set to 2 650 V, RF level to 40 and heated capillary tempera-
ture to 275 °C.

For proteome measurements we used a 100 min gradient starting 
at 5% buffer B followed by a stepwise increase to 30% in 80 min, 60% 
in 4 min and 95% in 4 min. The buffer B concentration stayed at 95% 
for 4 min, decreased to 5% in 4 min and stayed there for 4 min. The 
mass spectrometer was operated in data-independent mode (DIA) 
with a full scan range of 350-1 650 m/z at 120 000 resolution at 200 m/z,  
normalized automatic gain control (AGC) target of 300% and a maxi-
mum fill time of 28 ms. One full scan was followed by 22 windows with a 
resolution of 15 000, normalized automatic gain control (AGC) target of 

Article

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



1 000% and a maximum fill time of 25 ms in profile mode using positive 
polarity. Precursor ions were fragmented by higher-energy collisional 
dissociation (HCD) (NCE 30%). Each of the selected CVs (-40, -55 and 
-70) was applied to sequential survey scans and MS/MS scans; the MS/
MS CV was always paired with the appropriate CV from the correspond-
ing survey scan.

For phosphopeptide samples, 5 µl were loaded and eluted with a  
70 min gradient starting at 3% buffer B followed by a stepwise increase 
to 19% in 40 min, 41% in 20 min, 90% in 5 min and 95% in 5 min. The 
mass spectrometer was operated in data-independent mode (DIA) 
with a full scan range of 300-1 400 m/z at 120 000 resolution at  
200 m/z and a maximum fill time of 60 ms. One full scan was followed 
by 32 windows with a resolution of 30 000. Normalized automatic gain 
control (AGC) target and maximum fill time were set to 1 000% and  
54 ms, respectively, in profile mode using positive polarity. Precursor 
ions were fragmented by higher-energy collisional dissociation (HCD) 
(NCE stepped 25-27.5-30%). For the library generation, we enriched 
A549 cell lysates for phosphopeptides and measured them with 7 dif-
ferent CV settings (-30, -40, -50, -60, -70, -80 or -90 V) using the same 
DIA method. The noted CVs were applied to the FAIMS electrodes 
throughout the analysis.

For the analysis of K-ɛ-GG peptide samples, half of the samples were 
loaded. We used a 120 min gradient starting at 3% buffer B followed by 
a stepwise increase to 7% in 6 min, 20% in 49 min, 36% in 39 min, 45% in 
10 min and 95% in 4 min. The buffer B concentration stayed at 95% for  
4 min, decreased to 5% in 4 min and stayed there for 4 min. The mass 
spectrometer was operated in data-independent mode (DIA) with 
a full scan range of 300-1 350 m/z at 120 000 resolution at m/z 200, 
normalized automatic gain control (AGC) target of 300% and a maxi-
mum fill time of 20 ms. One full scan was followed by 46 windows with a 
resolution of 30 000. Normalized automatic gain control (AGC) target 
and maximum fill time were set to 1 000% and 54 ms, respectively, in 
profile mode using positive polarity. Precursor ions were fragmented 
by higher-energy collisional dissociation (HCD) (NCE 28%). For K-ɛ-GG 
peptide library, we mixed the first replicate of each sample and meas-
ured them with eight different CV setting (-35, -40, -45, -50, -55, -60, -70 
or -80 V) using the same DIA method.

Processing of raw MS data
AP-MS data. Raw MS data files of AP-MS experiments conducted in 
DDA mode were processed with MaxQuant (version 1.6.14) using the 
standard settings and label-free quantification enabled (LFQ min ratio 
count 1, normalization type none, stabilize large LFQ ratios disabled). 
Spectra were searched against forward and reverse sequences of the 
reviewed human proteome including isoforms (UniprotKB, release 
2019.10) and C-terminally HA-tagged SARS-CoV-2, SARS-CoV and HCoV 
proteins by the built-in Andromeda search engine63.

In-house Julia scripts64 were used to define alternative protein groups: 
only the peptides identified in AP-MS samples were considered for 
being protein group-specific, protein groups that differed by the single 
specific peptide or had less than 25% different specific peptides were 
merged to extend the set of peptides used for protein group quantita-
tion and reduce the number of protein isoform-specific interactions.

Viral protein overexpression DIA MS data. Spectronaut version 13 
(Biognosys) with the default settings was used to generate the proteome 
libraries from DDA runs by combining files of respective fractionations 
using the human fasta file (Uniprot, 2019.10, 42 431 entries) and viral 
bait sequences. Proteome DIA files were analyzed using the proteome 
library with the default settings and disabled cross run normalization.

SARS-CoV-2/SARS-CoV-infected proteome/PTM DIA MS data. 
Spectronaut version 14 (Biognosys)65 was used to generate the librar-
ies and analyze all DIA files using the human fasta file (UniprotKB, 
release 2019.10) and sequences of SARS-CoV-2/SARS-CoV proteins 

(UniProt, release 2020.08). Orf1a polyprotein sequences were split into 
separate protein chains according to the cleavage positions specified 
in the UniProt. For the generation of the PTM-specific libraries, the 
DIA single CV runs were combined with the actual DIA runs and either 
phosphorylation at Serine/Threonine/Tyrosine or GlyGly at Lysine was 
added as variable modification to default settings. Maximum number 
of fragment ions per peptide was increased to 25. The proteome DIA 
files were analyzed using direct DIA approach with default settings and 
disabled cross run normalization. All PTM DIA files were analyzed using 
their respective hybrid library and either phosphorylation at Serine/
Threonine/Tyrosine or GlyGly at Lysine was added as an additional 
variable modification to default settings with LOESS normalization 
and disabled PTM localization filter.

A collection of in-house Julia scripts64 were used to process the elu-
tion group (EG) -level Spectronaut reports, identify PTMs and assign 
EG-level measurements to PTMs. The PTM was considered if at least 
once it was detected with ≥ 0.75 localization probability in EG with 
q-value ≤ 10-3. For further analysis of given PTM, only the measurements 
with ≥ 0.5 localization probability and EG q-value ≤ 10-2 were used.

Bioinformatic analysis
Unless otherwise specified, the bioinformatic analysis was done in R 
(version 3.6), Julia (version 1.5) and Python (version 3.8) using a collec-
tion of in-house scripts64,66.

Statistical analysis of MS data. MaxQuant and Spectronaut output 
files were imported into R using in-house maxquantUtils R package67. 
For all MS datasets, the Bayesian linear random effects models were 
used to define how the abundances of proteins change between the 
conditions. To specify and fit the models we employed msglm R pack-
age68, which utilizes rstan package (version 2.19)69 for inferring the 
posterior distribution of the model parameters. In all the models, the 
effects corresponding to the experimental conditions have regularized 
horseshoe+ priors70, while the batch effects have normally distributed 
priors. Laplacian distribution was used to model the instrumental error 
of MS intensities. For each MS instrument used, the heteroscedastic 
intensities noise model was calibrated with the technical replicate 
MS data of the instrument. These data were also used to calibrate the 
logit-based model of missing MS data (the probability that the MS in-
strument will fail to identify the protein given its expected abundance 
in the sample). The model was fit using unnormalized MS intensities 
data. Instead of transforming the data by normalization, the inferred 
protein abundances were scaled by the normalization multiplier of 
each individual MS sample to match the expected MS intensity of that 
sample. This allows taking the signal-to-noise variation between the 
samples into account when fitting the model. Due to high computa-
tional intensity, the model was applied to each protein group separately. 
For all the models, 4 000 iterations (2 000 warmup + 2 000 sampling) 
of the No-U-Turn Markov Chain Monte Carlo were performed in 7 or 
8 independent chains, every 4th sample was collected for posterior 
distribution of the model parameters. For estimating the statistical sig-
nificance of protein abundance changes between the two experimental 
conditions, the p-value was defined as the probability that a random 
sample from the posterior distribution of the first condition would 
be smaller (or larger) than a random sample drawn from the second 
condition. No multiple hypothesis testing corrections were applied, 
since this is handled by the choice of the model priors.

Statistical analysis of AP-MS data and filtering for specific interac-
tions. The statistical model was applied directly to the MS1 intensities 
of protein group-specific LC peaks (evidence.txt table of MaxQuant 
output). In R GLM formula language, the model could be specified as

log Intensity t APMS Bait Bait

Virus MS peak MSbatch

( ( )) 1 + + +

: + 1 + ,

∼
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where APMS effect models the average shift of intensities in AP-MS data 
in comparison to full proteome samples, Bait is the average enrich-
ment of a protein in AP-MS experiments of homologous proteins of 
both SARS-CoV and SARS-CoV-2, and Bait:Virus corresponds to the 
virus-specific changes in protein enrichment. MS1peak is the log-ratio 
between the intensity of a given peak and the total protein abundance 
(the peak is defined by its peptide sequence, PTMs and the charge; 
it is assumed that the peak ratios do not depend on experimental 
conditions71), and MSbatch accounts for batch-specific variations 
of protein intensity. APMS, Bait and Bait:Virus effects were used to 
reconstruct the batch effect-free abundance of the protein in AP-MS  
samples.

The modeling provided the enrichment estimates for each protein 
in each AP experiment. Specific AP-MS interactions had to pass the 
two tests. In the first test, the enrichment of the candidate protein 
in a given bait AP was compared against the background, which was 
dynamically defined for each interaction to contain the data from all 
other baits, where the abundance of the candidate was within 50%-
90% percentile range (excluding top 10% baits from the background 
allowed the protein to be shared by a few baits in the resulting AP-MS 
network). The non-targeting control and Gaussia luciferase baits 
were always preserved in the background. Similarly, to filter out any 
potential side-effects of very high bait protein expression, the ORF3 
homologs were always present in the background of M interactors and 
vice versa. To rule out the influence of the batch effects, the second test 
was applied. It was defined similarly to the first one, but the background 
was constrained to the baits of the same batch, and 40%-80% percentile 
range was used. In both tests, the protein has to be 4 times enriched 
against the background (16 times for highly expressed baits: ORF3, M, 
NSP13, NSP5, NSP6, ORF3a, ORF7b, ORF8b, HCoV-229E ORF4a) with 
the p-value ≤ 10-3.

Additionally, we excluded the proteins that, in the viral protein 
expression data, have shown upregulation, and their enrichment in 
AP-MS data was less than 16 times stronger than observed upregula-
tion effects. Finally, to exclude the carryover of material between the 
samples sequentially analyzed by MS, we removed the putative inter-
actors, which were also enriched at higher levels in the samples of the 
preceding bait, or the one before it.

For the analysis of interaction specificity between the homologous 
viral proteins, we estimated the significance of interaction enrichment 
difference (corrected by the average difference between the enrich-
ment of the shared interactors to adjust for the bait expression varia-
tion). Specific interactions have to be 4 times enriched in comparison 
to the homolog with p-value ≤ 10-3.

Statistical analysis of DIA proteome effects upon viral protein over-
expression. The statistical model of the viral protein overexpression 
data set was similar to AP-MS data, except that protein-level intensities 
provided by Spectronaut were used. The PCA analysis of the protein 
intensities has identified that the 2nd principal component is associ-
ated with the batch-dependent variations between the samples. To 
exclude their influence, this principal component was added to the 
experimental design matrix as an additional batch effect.

As with AP-MS data, the two statistical tests were used to identify the 
significantly regulated proteins (column “is_change” in Supplementary 
Table 3). First, the absolute value of median log2-fold change of the 
protein abundance upon overexpression of a given viral protein in com-
parison to the background had to be above 1.0 with p-value ≤ 10-3. The 
background was individually defined for each analyzed protein. It was 
composed of experiments, where the abundance of given protein was 
within the 20%-80% percentile range of all measured samples. Second, 
the protein had to be significantly regulated (same median log2-fold 
change and p-value thresholds applied) against the batch-specific 
background (defined similarly to the global background, but using 
only the samples of the same batch).

An additional stringent criterion was applied to select the most sig-
nificant changes (column “is_top_change” in Supplementary Table 3; 
Extended data Fig. 1i).

For each protein we classified bait-induced changes as:
• �“high” when |median log2 fold-change| ≥ 1 and p-value ≤ 10-10 both 

in background and batch comparisons
• �“medium” if 10-10< p-value ≤ 10-4 with same fold-change require-

ment and
• �“low” if 10-4 < p-value ≤ 10-2 with same fold-change requirement, all 

other changes were considered non-significant.
We then required that “shared” top-regulated proteins should 

have exactly one pair of SARS-CoV-2/SARS-CoV “high”- or 
“medium”-significant homologous baits among the baits with either 
up- or downregulated changes and no other baits with significant 
changes of the same-type.

We further defined “SARS-CoV-2-specific” or “SARS-CoV-specific” 
top-regulated proteins to be the ones with exactly one “high”-significant 
change, and no other significant changes of the same sign. For “specific” 
hits we additionally required that in comparison of “high”-significant 
bait to its homolog |median log2 fold-change| ≥ 1 and p-value ≤ 10-3. 
When the homologous bait was missing (SARS-CoV-2 NSP1, SARS-CoV 
ORF8a and SARS-CoV ORF8b), we instead required that in the com-
parison of the “high”-significant change to the background |median 
log2 fold-change| ≥ 1.5.

The resulting network of most affected proteins was imported and 
prepared for publication in Cytoscape v.3.8.172.

Statistical analysis of DIA proteomic data of SARS-CoV-2 and 
SARS-CoV-infected A549-ACE2 cells. Similarly to the AP-MS DDA 
data, the linear Bayesian model was applied to the elution group (EG) 
level intensities. To model the protein intensity, the following linear 
model (in R notation) was used:

∼ ∑log Intensity t after t infection CoV after t EG( ( )) 1 + ( ( ) + ( ± 2) : ( )) +
t t

i i
≤i

where
• �after(ti) effect corresponds to the protein abundance changes in 

mock-infected samples that happened between ti-1 and ti h.p.i. and it 
is applied to the modeled intensity at all time points starting from ti;

• �infection:after(ti) (ti=6, 12, 24) is the common effect of SARS-CoV-2 
& SARS-CoV infections occurred between ti-1 and ti;

• �CoV2:after(ti) is the virus-specific effect within ti-1 and ti h.p.i. that 
is added to the log intensity for SARS-CoV-2-infected samples and 
subtracted from the intensity for SARS-CoV ones;

• EG is the elution group-specific shift in the measured log-intensities.
The absolute value of median log2 fold change between the con-

ditions above 0.25 and the corresponding unadjusted p-value ≤ 10-3 
were used to define the significant changes at a given time point in 
comparison to mock infection. We also required that the protein group 
is quantified in at least two replicates of at least one of the compared 
conditions. Additionally, if for one of the viruses (e.g. SARS-CoV-2) 
only the less stringent condition (|median log2 fold-change| ≥ 0.125, 
p-value ≤ 10-2) was fulfilled, but the change was significant in the infec-
tion of the other virus (SARS-CoV), and the difference between the 
viruses was not significant, the observed changes were considered 
significant for both viruses.

Statistical analysis of DIA phosphoproteome and ubiquitinome 
data of SARS-CoV-2 and SARS-CoV infections. The data from single- 
double- and triple-modified peptides were analyzed separately and, for 
a given PTM, the most significant result was reported.

The data was analyzed with the same Bayesian linear model as 
proteome SARS-CoV/-2 infection data. In addition to the intensities 
normalization, for each replicate sample the scale of the effects in 
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the experimental design matrix was adjusted, so that on average the 
correlation between log fold-changes of the replicates was 1:1. The 
same logic as for the proteome analysis, was applied to identify sig-
nificant changes, but the median log2 fold change had to be larger than 
0.5, or 0.25 for the less stringent test. We additionally required that 
the PTM peptides are quantified in at least two replicates of at least 
one of the compared conditions. To ignore the changes in PTM site 
intensities that are due to proteome-level regulation, we excluded 
PTM sites on significantly regulated proteins if the direction of pro-
tein and PTM site changes was the same and the difference between 
their median log2 fold changes was less than 2. Phosphoproteomics 
data were further analyzed with Ingenuity Pathway Analysis software 
(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis).

Transcriptomic analysis of SARS-CoV-2 and SARS-CoV infected 
A549-ACE2 cells. As for the analysis of the transcriptome data, Gen-
code gene annotations v28 and the human reference genome GRCh38 
were derived from the Gencode homepage (EMBL-EBI). Viral genomes 
were derived from GenBank (SARS-CoV-2 - LR824570.1, and SARS-CoV 
- AY291315.1). Dropseq tool v1.12 was used for mapping raw sequencing 
data to the reference genome. The resulting UMI filtered count matrix 
was imported into R v3.4.4. CPM (counts per million) values were cal-
culated for the raw data and genes having a mean cpm value less than 
1 were removed from the dataset. A dummy variable combining the 
covariates infection status (mock, SARS-CoV, SARS-CoV-2) and time 
point was used for modeling the data within Limma (v3.46.0)73.

Data was transformed with the Voom method73 followed by quantile 
normalization. Differential testing was performed between infection 
states at individual timepoints by calculating moderated t-statistics and 
p-values for each host gene. A gene was considered to be significantly 
regulated if the FDR adjusted p-value was below 0.05. The data for this 
study have been deposited in the European Nucleotide Archive (ENA) 
at EMBL-EBI under accession number PRJEB38744.

Gene Set Enrichment Analysis. We have used Gene Ontology, Reac-
tome and other EnrichmentMap gene sets of human proteins (version 
2020.10)74 as well as protein complexes annotations from IntAct Com-
plex Portal (version 2019.11)75 and CORUM (version 2019)76. Phospho-
SitePlus (version 2020.08) was used for known kinase-substrate and 
regulatory sites annotations, Perseus (version 1.6.14.0)77 was used for 
annotation of known kinase motifs. For transcription factor enrichment 
analysis (Extended data Fig. 2e) the significantly regulated transcripts 
were submitted to ChEA3 web-based application78 and ENCODE data 
on transcription factor–target gene associations were used79.

To find the nonredundant collection of annotations describing the 
unique and shared features of multiple experiments in a dataset (Fig-
ure 1d, Extended data Fig. 2l, m), we have used in-house Julia package 
OptEnrichedSetCover.jl80, which employs evolutionary multi-objective 
optimization technique to find a collection of annotation terms that 
have both significant enrichments in the individual experiments and 
minimal pairwise overlaps.

The resulting set of terms was further filtered by requiring that the 
annotation term has to be significant with the specified unadjusted 
Fisher’s Exact Test p-value cutoff at least in one of the experiments or 
comparisons (the specific cutoff value is indicated in the figure legend 
of the corresponding enrichment analysis).

The generation of diagonally-split heatmaps was done with VegaLite.
jl package (https://github.com/queryverse/VegaLite.jl).

Viral PTMs alignment. For matching the PTMs of SARS-CoV-2 and 
SARS-CoV the protein sequences were aligned using the BioAlignments.
jl Julia package (v.2.0, https://github.com/BioJulia/BioAlignments.jl). 
Needleman-Wunsch algorithm with BLOSUM80 substitution matrix, 
-5 and -3 penalties for the gap and extension, respectively.

As for the cellular proteins, we required that the viral phospho-
rylation or ubiquitination site is observed with q-value ≤ 10-3 and 
localization probability ≥ 0.75. For the PTMs with lower confidence 
(q-value ≤ 10-2 and localization probability ≥ 0.5) we required that the 
same site is observed with high confidence at the matching position 
of the orthologous protein of the other virus.

Network diffusion analysis. To systematically detect functional in-
teractions, which may connect the cellular targets of each viral protein 
(interactome dataset) with the downstream changes it induces on 
proteome level (effectome dataset), we have used the network 
diffusion-based HierarchicalHotNet method36 as implemented in Julia 
package HierarchicalHotNet.jl81 . Specifically, for network diffusion 
with restart, we used the ReactomeFI network (version 2019)35 of cel-
lular functional interactions, reversing the direction of functional in-
teraction (e.g. replacing kinase→substrate interaction with 
substrate→kinase). The proteins with significant abundance changes 
upon bait overexpression (|median(log2  fold  change)|  ≥  0.25, 
p-value ≤ 10-2 both in the comparison against the controls and against 
the baits of the same batch) were used as the sources of signal diffusion 
with weights set to w median p= | log fold−change| ⋅ |log −value |i 2 10

, 
otherwise the node weight was set to zero. The weight of the edge gi→gj 
was set to w w= 1 + .i j j,  The restart probability was set to 0.4, as sug-
gested in the original publication, so that the probability of the random 
walk to stay in the direct neighborhood of the node is the same as the 
probability to visit more distant nodes. To find the optimal cutting 
threshold of the resulting hierarchical tree of strongly connected com-
ponents (SCCs) of the weighted graph corresponding to the stationary 
distribution of signal diffusion and to confirm the relevance of pre-
dicted functional connections, the same procedure was applied to 
1 000 random permutations of vertex weights as described in Reyna 
et al.36 (vertex weights are randomly shuffled between the vertices with 
similar in- and out-degrees). Since cutting the tree of SCCs at any thresh-
old t (keeping only the edges with weights above t) and collapsing each 
resulting SCC into a single node produces the directed acyclic graph 
of connections between SCCs, it allowed efficient enumeration of the 
paths from the “source” nodes (proteins strongly perturbed by viral 
protein expression with vertex weight w, w ≥ 1.5) to the “sink” nodes 
(interactors of the viral protein). At each threshold t, the average inverse 
of the path length from source to sink nodes was calculated as:

∑L t
N N

L p( ) =
1
⋅

( ),avg
src sink p

SCC
−1 −1

where Nsrc is the number of “sources”, Nsink is the number of “sinks”, 
LSCC(p) is the number of SCCs that the given path p from source to sink 
goes through, and the sum is for all paths from sources to sinks. The 
metric changes from 1 (all sources and sinks in the same SCC) to 0 (no 
or infinitely long paths between sources and sinks). For the generation 
of the diffusion networks we were using the topt threshold that maxi-
mized the difference between L t( )avg

−1 for the real data and the third 
quartile of L t( )avg

−1  for randomly shuffled data.
In the generated SCC networks, the direction of the edges was 

reverted back, and the results were exported as GraphML files using 
in-house Julia scripts64. The catalogue of the networks for each viral 
bait is available as Supplementary Data 1.

To assess the significance of edges in the resulting network, we calcu-
lated the p-value of the edge gi→gj as the probability that the permuted 
data-based transition probability between the given pair of genes is 
higher than the real data-based one:

P w g g w g g( ( , ) ≤ ( , )).real i j perm i j

This p-value was stored as the “prob_perm_walkweight_greater” edge 
attribute of GraphML output. The specific subnetworks predicted 
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by the network diffusion (Figure 4b - d) were filtered for edges with 
p-value ≤ 0.05.

When the gi→gj connection was not present in the ReactomeFI net-
work, to recover the potential short pathways connecting gi and gj, 
ReactomeFI was searched for intermediate gk nodes, such that the 
edges gi→gk and gk→gj are present in ReactomeFI. The list of these short 
pathways is provided as “flowpaths” edge attribute in GraphML output.

The GraphML output of network diffusion was prepared for publica-
tion using yEd (v.3.20, www.yworks.com).

Intersection with other SARS coronavirus datasets. The intersection 
between the data generated by this study and other publicly available 
datasets was done using the information from respective supplementary 
tables. When multiple viruses were used in a study, only the comparisons 
with SARS-CoV and SARS-CoV-2 were included. For time-resolved data, 
all time points up to 24 h.p.i. were considered. The dataset coverage was 
defined as the number of reported distinct protein groups for proteomic 
studies and genes for transcriptomic studies. Confident interactions/
significant regulations were filtered according to the criteria specified 
in the original study. A hit was considered as “confirmed” when it was 
significant both in this and external data and showed the same trend.

qRT-PCR analysis
RNA isolation from SARS-CoV and SARS-CoV-2 infected A549-ACE2 
cells was performed as described above (Qiagen). 500 ng total RNA was 
used for reverse transcription with PrimeScript RT with gDNA eraser 
(Takara). For relative transcript quantification PowerUp SYBR Green 
(Applied Biosystems) was used. Primer sequences can be provided 
upon request.

Co-immunoprecipitation and western blot analysis
HEK293T cells were transfected with pWPI plasmid encoding single 
HA-tagged viral proteins, alone or together with pTO-SII-HA expressing 
host factor of interest. 48 hours after transfection, cells were washed 
in PBS, flash frozen in liquid nitrogen and kept at -80 °C until further 
processing. Co-immunoprecipitation experiments were performed as 
described previously55,56. Briefly, cells were lysed in lysis buffer (50 mM 
Tris-HCl pH 7.5, 100 mM NaCl, 1.5 mM MgCl2, 0.2% (v/v) NP-40, 5% (v/v) 
glycerol, cOmplete protease inhibitor cocktail (Roche), 0.5% (v/v) 750 
U/µl Sm DNAse) and sonicated (5 min, 4 °C, 30 sec on, 30 sec off, low 
settings; Bioruptor, Diagenode SA). HA or Streptactin beads were added 
to cleared lysates and samples were incubated for 3 hours at 4 °C under 
constant rotation. Beads were washed six times in the lysis buffer and 
resuspended in 1x SDS sample buffer 62,5 mM Tris-HCl pH 6.8, 2% SDS, 
10% glycerol, 50 mM DTT, 0.01% bromophenol blue). After boiling for 5 
minutes at 95 °C, a fraction of the input lysate and elution were loaded 
on NuPAGE™ Novex™ 4-12% Bis-Tris (Invitrogen), and further submitted 
to western blotting using Amersham Protran nitrocellulose membranes. 
Imaging was performed by HRP luminescence (ECL, Perkin Elmer).

SARS-CoV-2 infected A549-ACE2 cell lysates were sonicated (10 min, 
4 °C, 30 sec on, 30 sec off, low settings; Bioruptor, Diagenode SA). 
Protein concentration was adjusted based on Pierce660 assay supple-
mented with ionic detergent compatibility reagent. After boiling for 5 
min at 95 °C and brief max g centrifugation, the samples were loaded 
on NuPAGE™ Novex™ 4-12% Bis-Tris (Invitrogen), and blotted onto 0,22 
µm Amersham™ Protran® nitrocellulose membranes (Merck). Primary 
and secondary antibody stainings were performed according to the 
manufacturer’s recommendations. Imaging was performed by HRP 
luminescence using Femto kit (ThermoFischer Scientific) or Western 
Lightning PlusECL kit (Perkin Elmer).

Mapping of identified post-translational modification sites on 
the C-terminal domain structure of the Nucleocapsid protein
N CTD dimers of SARS-CoV-2 (PDB: 6YUN) and SARS-CoV (PDB: 
2CJR) were superimposed by aligning the α-carbons backbone over 

111 residues (from position 253/254 to position 364/365 following 
SARS-CoV-2/SARS-CoV numbering) by using the tool MatchMaker82 
as implemented in the Chimera software83. Ubiquitination sites were 
visually inspected and mapped by using the PyMOL software (https://
pymol.org). Phosphorylation on Ser310/311 was simulated in silico by 
using the PyTMs plugin as implemented in PyMOL84. Inter-chain resi-
due contacts, dimer interface area, free energy and complex stability 
were comparatively analyzed between non-phosphorylated and phos-
phorylated SARS-CoV-2 and SARS-CoV N CTD by using the PDBePISA 
server85. Poisson–Boltzmann electrostatic surface potential of native 
and post-translationally modified N CTD was calculated by using the 
PBEQ Solver tool on the CHARMM-GUI server by preserving existing 
hydrogen bonds86. Molecular graphics depictions were produced with 
the PyMOL software.

Reporter Assay and IFN Bioassay
The following reporter constructs were used in this study: pISRE-luc 
was purchased from Stratagene, EF1-α-ren from Engin Gürlevik, 
pCAGGS-Flag-RIG-I from Chris Basler, pIRF1-GAS-ff-luc, pWPI-SMN1-flag 
and pWPI-NS5 (ZIKV)-HA was described previously56,87.

For the reporter assay, HEK293-R1 cells were plated in 24-well plates 
24 hours prior to transfection. Firefly reporter and Renilla transfec-
tion control were transfected together with plasmids expressing viral 
proteins using polyethylenimine (PEI, Polysciences) for untreated 
and treated conditions. In 18 hours cells were stimulated for 8 hours 
with a corresponding inducer and harvested in the passive lysis buffer 
(Promega). Luminescence of Firefly and Renilla luciferases was meas-
ured using dual-luciferase-reporter assay (Promega) according to the 
manufacturer’s instructions in a microplate reader (Tecan).

Total amounts of IFN-α/β in cell supernatants were measured by using 
293T cells stably expressing the firefly luciferase gene under the control 
of the mouse Mx1 promoter (Mx1-luc reporter cells)88. Briefly, HEK293-R1 
cells were seeded, transfected with pCAGGS-flag-RIG-I plus viral protein 
constructs and stimulated as described above. Cell supernatants were 
harvested in 8 hours. Mx1-luc reporter cells were seeded into 96-well 
plates in triplicates and were treated 24 hours later with supernatants. 
At 16 hours post-incubation, cells were lysed in the passive lysis buffer 
(Promega), and luminescence was measured with a microplate reader 
(Tecan). The assay sensitivity was determined by a standard curve.

Viral inhibitor assay
A549-ACE2 cells were seeded into 96-well plates in DMEM medium (10% 
FCS, 100 ug/ml Streptomycin, 100 IU/ml Penicillin) one day before 
infection. Six hours before infection, or at the time of infection, the 
medium was replaced with 100μl of DMEM medium containing either 
the compounds of interest or DMSO as a control. Infection was per-
formed by adding 10μl of SARS-CoV-2-GFP (MOI 3) per well and plates 
were placed in the IncuCyte S3 Live-Cell Analysis System where whole 
well real-time images of mock (Phase channel) and infected (GFP and 
Phase channel) cells were captured every 4 hours for 48 hours. Cell 
viability (mock) and virus growth (mock and infected) were assessed 
as the cell confluence per well (Phase area) and GFP area normalized 
on cell confluence per well (GFP area/Phase area) respectively using 
IncuCyte S3 Software (Essen Bioscience; version 2019B Rev2).

For comparative analysis of antiviral treatment activity against 
SARS-CoV and SARS-CoV-2, A549-ACE2 cells were seeded in 24-well 
plates, as previously described. Treatment was performed for 6 hours 
with 0.5ml of DMEM medium containing either the compounds of 
interest or DMSO as a control, and infected with SARS-CoV-Frankfurt-1 
or SARS-CoV-2-MUC-IMB-1 (MOI 1) for 24 hours. Total cellular RNA was 
harvested and analyzed by qRT-PCR, as previously described.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Data availability
The raw sequencing data for this study have been deposited in the Euro-
pean Nucleotide Archive (ENA) at EMBL-EBI under accession number 
PRJEB38744. The mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE89 partner reposi-
tory with the dataset identifier PXD022282, PXD020461 and PXD020222. 
The protein interactions from this publication have been submitted 
to the IMEx (http://www.imexconsor-tium.org) consortium through 
IntAct90 with the identifier IM-28109. The data and analysis results are 
accessible online via the interactive web interface at https://covinet.
innatelab.org. The following public data sets were used in the study:

- �Gene Ontology and Reactome annotations (http://download.bader-
lab.org/EM_Genesets/April_01_2019/Human/UniProt/Human_GO_
AllPathways_with_GO_iea_April_01_2019_UniProt.gmt).

- �IntAct Protein Interactions (https://www.ebi.ac.uk/intact/, 
v2019.12).

- �IntAct Protein Complexes (https://www.ebi.ac.uk/complexportal/
home, v2019.12).

- �CORUM Protein Complexes (http://mips.helmholtz-muenchen.de/
corum/download/allComplexes.xml.zip, v2018.3).

- �Reactome Functional Interactions (https://reactome.org/download/
tools/ReatomeFIs/FIsInGene_020720_with_annotations.txt.zip). 

- �Reactome Functional Interactions (https://reactome.org/download/
tools/ReatomeFIs/FIsInGene_020720_with_annotations.txt.zip).

- �Human (v2019.10), Human-CoV, SARS-CoV-2 and SARS-CoV 
(v2020.08) protein sequences: https://uniprot.org.

Code availability
In-house R and Julia packages and scripts used for the bioinformatics 
analysis of the data have been deposited to public GitHub repositories: 
https://doi.org/10.5281/zenodo.4536605, https://doi.org/10.5281/
zenodo.4536603, https://doi.org /10.5281/zenodo.4536590, 
https://doi.org/10.5281/zenodo.4536596, https://doi.org/10.5281/
zenodo.4541090, https://doi.org/10.5281/zenodo.4541082.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | SARS-CoV-2 and SARS-CoV proteins expressed in 
A549 cells target host proteins. (a) Expression of HA-tagged viral proteins, in 
stably transduced A549 cells, used in AP-MS and proteome expression 
measurements. When several bands are present in a single lane, * marks the 
band with expected molecular weight (n = 4 independent experiments). For gel 
source data, see Supplementary Figure 1. (b) Extended version of the virus-host 
protein-protein interaction network with 24 SARS-CoV-2 and 27 SARS-CoV 
proteins, as well as ORF3 of HCoV-NL63 and ORF4 and ORF4a of HCoV-229E, 
used as baits. Host targets regulated upon viral protein overexpression are 
highlighted (see the in-plot legend). (c-f) Co-precipitation experiments in 
HEK293T cells showing a specific enrichment of (c) endogenous MAVS co-

precipitated with C-terminal HA-tagged ORF7b of SARS-CoV-2 and SARS-CoV 
(negative controls: SARS-CoV-2 ORF6-HA, ORF7a-HA), (d) ORF7b-HA of SARS-
CoV-2 and SARS-CoV co-precipitated with SII-HA-UNC93B1 (control 
precipitation: SII-HA-RSAD2), (e) endogenous HSPA1A co-precipitated with 
N-HA of SARS-CoV-2 and SARS-CoV (control: SARS-CoV-2 ORF6-HA) and (f) 
endogenous TGF-β with ORF8-HA of SARS-CoV-2 vs ORF8-HA, ORF8a-HA, 
ORF8b-HA of SARS-CoV or ORF9b-HA of SARS-CoV-2. (n=2 independent 
experiments). For gel source data, see Supplementary Figure 1. AP-MS: affinity-
purification coupled to mass spectrometry; MD: Macro domain; NSP: Non-
structural protein.
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Extended Data Fig. 2 | SARS-CoV-2 and SARS-CoV proteins trigger shared 
and specific interactions with host factors, and induce changes to the host 
proteome. (a-b) Differential enrichment of proteins in (a) NSP2 and (b) ORF8 
of SARS-CoV-2 (x-axis) vs SARS-CoV ( y-axis) AP-MS experiments (n=4 
independent experiments). (c) Gene Ontology Biological Processes enriched 
among the cellular proteins that are up- (red arrow) or down- (blue arrow) 

regulated upon overexpression of individual viral proteins. (d) The most 
affected proteins from the effectome data of protein changes upon viral bait 
overexpression in A549 cells (see materials and methods for the exact protein 
selection criteria). Homologous viral proteins are displayed as a single node. 
Shared and virus-specific effects are denoted by the edge color. NSP: 
Non-structural protein.
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Extended Data Fig. 3 | RCOR3 and APOB regulation upon SARS-CoV-2 and 
SARS-CoV protein over-expression. (a-b) Normalized intensities of selected 
candidates specifically perturbed by individual viral proteins: (a) RCOR3 was 
upregulated both by SARS-CoV-2 and SARS-CoV NSP4 proteins, (b) APOB was 

upregulated by ORF3 and downregulated by NSP1 specifically to SARS-CoV-2. 
The box and the whiskers represent 50% and 95% confidence intervals, and the 
white line corresponds to the median of the log2 fold-change upon viral protein 
overexpression (n=4 independent experiments).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Tracking of virus-specific changes in infected A549-
ACE2 cells by transcriptomics and proteomics. (a) Western blot showing 
ACE2-HA expression levels in A549 cells untransduced (wild-type) or 
transduced with ACE2-HA-encoding lentivirus (n = 2 independent 
experiments). For gel source data, see Supplementary Figure 1. (b) mRNA 
expression levels of SARS-CoV-2 N relative to RPLP0 as measured by qRT-PCR 
upon infection of wild-type A549 and A549-ACE2 cells at the indicated MOIs. 
Error bars represent mean and standard deviation (n=3 independent 
experiments). (c) Volcano plot of mRNA expression changes of A549-ACE2 
cells, infected with SARS-CoV-2 at an MOI of 2 in comparison to mock infection 
at 12 h.p.i. Significant hits are highlighted in gray (moderated t-test FDR-
corrected two-sided p-value, n=3 independent experiments). Diamonds 
indicate that the actual log2 fold change or p-value were truncated to fit into the 
plot. (d) Expression levels, as measured by qRT-PCR, of SARS-CoV-2/SARS-CoV 
N and host transcripts relative to RPLP0 in infected (MOI 2) A549-ACE2 cells 
with SARS-CoV-2 (orange) and SARS-CoV (brown) at indicated time points. 
Error bars correspond to mean and standard deviation (Two-sided student 
t-test, unadjusted p-value, n=3 independent experiments). *: p-value ≤ 0.05;  
**: p-value ≤ 0.01; ***: p-value ≤ 10-3. (e) Analysis of transcription factors, whose 
targets are significantly enriched among up- (red arrow) and down- (blue 
arrow) regulated genes of A549-ACE2 cells infected with SARS-CoV-2 (upper 
triangle) and SARS-CoV (lower triangle) for indicated time points (Fisher’s 

exact test unadjusted one-sided p-value ≤ 10-4). (f) Volcano plot of SARS-CoV-2-
induced protein abundance changes at 24 h.p.i. in comparison to mock.  
Viral proteins are highlighted in orange, selected significant hits are marked  
in black (Bayesian linear model-based unadjusted two-sided p-value ≤ 10-3, 
|median log2 fold change| ≥ 0.25, n=4 independent experiments). Diamonds 
indicate that the actual log2 fold change was truncated to fit into the plot.  
(g) Western blot showing the total levels of ACE2-HA protein at 6, 12, 24 and  
36 h.p.i. (mock, SARS-CoV-2 and SARS-CoV infections); N viral protein as 
infection and ACTB as loading controls (n = 3 independent experiments). For 
gel source data, see Supplementary Figure 1. (h) Stable expression of ACE2 
mRNA transcript relative to RPLP0, as measured by qRT-PCR, after SARS-CoV-2 
and SARS-CoV infections (MOI 2) of A549-ACE2 cells at indicated h.p.i. (error 
bars show mean and standard deviation, n=3 independent experiments).  
(i) Scatter plots comparing the host proteome of SARS-CoV-2 (x-axis) and 
SARS-CoV ( y-axis) infection at 24 h.p.i. (log2 fold change in comparison to the 
mock infection samples at the same time point). Significantly regulated 
proteins (Bayesian linear model-based unadjusted two-sided p-value ≤ 10-3, 
|log2 fold change| ≥ 0.25, n=4 independent experiments), are colored according 
to their specificity in both infections. Diamonds indicate that the actual log2 
fold change was truncated to fit into the plot. h.p.i.: hours post-infection;  
MOI: multiplicity of infection.
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Extended Data Fig. 5 | Post-translational modifications modulated during 
SARS-CoV-2 or SARS-CoV infection. (a) Volcano plots of SARS-CoV-2-induced 
ubiquitination changes at 24 h.p.i. in comparison to mock. The viral PTM sites 
are highlighted in orange and selected significant hits in black. (b) Scatter plots 
comparing the host phosphoproteome of SARS-CoV-2 (x-axis) and SARS-CoV 
( y-axis) infection at 24 h.p.i. (log2 fold change in comparison to the mock 
infection samples at the same time point). Significantly regulated sites are 
colored according to their specificity in both infections. (c) Volcano plots of 
SARS-CoV-2-induced phosphorylation changes at 24 h.p.i. in comparison to 
mock. The viral PTM sites are highlighted in orange and selected significant 
hits in black. For (a-c), a change is defined significant if its Bayesian linear 
model-based unadjusted two-sided p-value ≤ 10-3 and |log2 fold change| ≥ 0.5, 
n=3 independent experiments for ubiquitination and n=4 independent 

experiments for phosphorylation data. Diamonds in (a-c) indicate that the 
actual log2 fold change was truncated to fit into the plot. (d) Profile plots 
showing the time-resolved phosphorylation of ACE2 (S787) and RAB7A (S72) 
with indicated median, 50% and 95% confidence intervals. n = 4 independent 
experiments (e) The enrichment of host kinase motifs among the significantly 
regulated phosphorylation sites of SARS-CoV-2 (upper triangle) and 
SARS-CoV-infected (lower triangle) A549-ACE2 cells (MOI 2) at the indicated 
time points (Fisher’s exact test, unadjusted one-sided p-value ≤ 10-3). (f) The 
enrichment of specific kinases among the ones known to phosphorylate 
significantly regulated sites at the indicated time points and annotated in 
PhosphoSitePlus database (Fisher’s exact test, unadjusted one-sided 
p-value ≤ 10-2). h.p.i.: hours post-infection.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Integration of multi-omics data from SARS-CoV-2 
and SARS-CoV infection identified co-regulation of host and viral factors. 
(a) Phosphorylation (purple square) and ubiquitination (red circles) sites on 
vimentin (VIM) regulated upon SARS-CoV-2 infection. The plot shows the 
medians of log2 fold changes compared to mock at 6, 12, 24, and 36 h.p.i., 
regulatory sites are indicated with a thick black border. (b) Profile plots of VIM 
K334 ubiquitination, S56 and S72 phosphorylation, and total protein levels in 
SARS-CoV-2 or SARS-CoV infected A549-ACE2 cells at indicated times after 
infection, with indicated median, 50% and 95% confidence intervals. n=3 
(ubiquitination) or 4 (total protein levels, phosphorylation) independent 
experiments (c) Number of ubiquitination sites identified on each SARS-CoV-2 
or SARS-CoV proteins in infected A549-ACE2 cells. (d-e) Mapping the 
ubiquitination and phosphorylation sites of SARS-CoV-2/SARS-CoV M and S 
proteins on their aligned sequence with median log2 intensities in infected 
A549-ACE2 cells at 24 h.p.i. (n=4 independent experiments for 
phosphorylation and n = 3 independent experiments for ubiquitination data). 
Functional (blue) and topological (yellow) domains are mapped on each 
sequence. Binding of ubiquitin modifying enzymes to both M proteins and the 

host kinases that potentially recognise motifs associated with the reported 
sites and overrepresented among cellular motifs enriched upon infection 
(Extended data Fig. 5e, f) or interacting with given viral protein (Extended data 
Fig. 1b) are indicated (green). (f) Number of phosphorylation sites identified on 
each SARS-CoV-2 or SARS-CoV proteins in infected A549-ACE2 cells.  
(g) Mapping the ubiquitination (red circle) and phosphorylation (purple 
square) sites of SARS-CoV-2/SARS-CoV N protein on their aligned sequence 
with median log2 intensities in A549-ACE2 cells infected with the respective 
virus at 24 h.p.i. (n=4 independent experiments). Functional (blue) domains are 
mapped on each sequence. The host kinases that potentially recognise motifs 
associated with the reported sites and overrepresented among cellular motifs 
enriched upon infection (Extended data Fig. 5e, f) or interacting with given 
viral protein (Extended data Fig. 1b) (green). (h) Electrostatic surface potential 
analysis of non-phosphorylated and phosphorylated SARS-CoV and SARS-
CoV-2 N CTD dimers is shown on the right panels; red, white and blue regions 
represent areas with negative, neutral and positive electrostatic potential, 
respectively (scale from -50 to +50 kT e -1). h.p.i.: hours post-infection;  
TM: transmembrane domain; CTD: C-terminal domain.
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Extended Data Fig. 7 | Reactome pathways enrichment in multi-omics data 
of SARS-CoV-2 and SARS-CoV infection. (a) Reactome pathways enriched in 
up- (red arrow) or downregulated (blue arrow) transcripts, proteins, 

ubiquitination and phosphorylation sites (Fisher’s exact test unadjusted 
p-value ≤ 10-4) in SARS-CoV-2 or SARS-CoV-infected A549-ACE2 cells at 
indicated times after infection. h.p.i.: hours post-infection.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | SARS-CoV-2 uses a multi-pronged approach to 
perturb host-pathways at several levels. (a) The host subnetwork perturbed 
by SARS-CoV-2 M predicted by the network diffusion approach. Edge thickness 
reflects the transition probability in random walk with restart, directed edges 
represent the walk direction, and ReactomeFI connections are highlighted in 
black. (b) Selection of the optimal threshold for the network diffusion model of 
SARS-CoV-2 M-induced proteome changes. The plot shows the relationship 
between the minimal allowed edge weight of the random walk graph (x-axis) 
and the mean inverse length of the path from the regulated proteins to the host 
targets of the viral protein along the edges of the resulting filtered subnetwork 
( y-axis). The red curve represents the metric for the network diffusion analysis 
of the actual data. The grey band shows 50% confidence interval, and dashed 
lines correspond to 95% confidence interval for the average inverse path length 
distribution for 1000 randomised datasets. Optimal edge weight threshold 
that maximizes the difference between the metric based on real data and its 3rd 
quartile based on randomized data is highlighted by the red vertical line. (c-d) 
Subnetworks of the network diffusion predictions linking host targets of SARS-
CoV-2 (c) ORF7b to the factors involved in innate immunity and (d) ORF8 to the 
factors involved in TGF-β signaling. (e-f) Western blot showing the 
accumulation of the autophagy-associated factor MAP1LC3B upon (e) SARS-

CoV-2 ORF3 expression in HEK293-R1 cells (n=3 independent experiments) and 
(f) SARS-CoV-2/SARS-CoV infection of A549-ACE2 cells (n=3 independent 
experiments). For gel source data, see Supplementary Figure 1. (g-h) Profile 
plots showing the time-resolved (g) ubiquitination of the autophagy regulators 
MAP1LC3A, GABARAP, VPS33A and VAMP8 (n=3 independent experiments), as 
well as (h) an increase in total protein abundance of APOB with indicated 
median, 50% and 95% confidence intervals (n=4 independent experiments).  
(i) Overview of perturbations to host-cell innate immunity-related pathways, 
induced by distinct proteins of SARS-CoV-2, derived from the network 
diffusion model and overlaid with transcriptional, ubiquitination and 
phosphorylation changes upon SARS-CoV-2 infection. ( j) Heatmap showing 
the effects of the indicated SARS-CoV-2 proteins on type-I IFN expression 
levels, ISRE and GAS promoter activation in HEK293-R1. Accumulation of type-I 
IFN in the supernatant was evaluated by testing supernatants of PPP-RNA 
(IVT4) stimulated cells on MX1-luciferase reporter cells, ISRE promoter 
activation – by luciferase assay after IFN-α stimulation, and GAS promoter 
activation – by luciferase assay after IFN-γ stimulation in cells expressing  
SARS-CoV-2 proteins as compared to the controls (ZIKV NS5 and SMN1)  
(n=3 independent experiments).
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Extended Data Fig. 9 | Perturbation of host integrin-TGF-β-EGFR-RTK 
signaling by SARS-CoV-2. (a) Overview of perturbations to host-cell 
Integrin-TGF-β-EGFR-RTK signaling, induced by distinct proteins of 
SARS-CoV-2, derived from the network diffusion model and overlaid with 
transcriptional, ubiquitination and phosphorylation changes upon 
SARS-CoV-2 infection. (b) Profile plots of total protein levels of SERPINE1 and 
FN1 in SARS-CoV-2 or SARS-CoV-infected A549-ACE2 cells at 6, 12, and 24 h.p.i., 
with indicated median, 50% and 95% confidence intervals. (n = 4 independent 

experiments) (c) Profile plots showing intensities of indicated phosphosites on 
NCK2, JUN, SOS1 and MAPKAPK2 in SARS-CoV-2 or SARS-CoV-infected 
A549-ACE2 cells at 6, 12, 24 and 36 h.p.i., with indicated median, 50% and 95% 
confidence intervals. (n = 4 independent experiments) (d) Western blot 
showing phosphorylated (T180/Y182) and total protein levels of p38 in 
SARS-CoV-2 or SARS-CoV infected A549-ACE2 cells. (n = 3 independent 
experiments) For gel source data, see Supplementary Figure 1. h.p.i.: hours 
post-infection.
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Extended Data Fig. 10 | Drug repurposing screen, focusing on pathways 
perturbed by SARS-CoV-2, reveals potential candidates for use in antiviral 
therapy. (a) A549-ACE2 cells exposed for 6 hours to the specified 
concentrations of IFN-α and infected with SARS-CoV-2-GFP reporter virus (MOI 
3). GFP signal and cell confluency were analyzed by live-cell imaging for 48 
h.p.i. Time-courses show virus growth over time as the mean of GFP-positive 
area normalized to the total cell area (n=4 independent experiments). (b) 
A549-ACE2 cells were pre-treated for 6 hours or treated at the time of infection 
with SARS-CoV-2-GFP reporter virus (MOI 3). GFP signal and cell growth were 
tracked for 48 h.p.i. by live-cell imaging using an Incucyte S3 platform. Left 
heatmap: the cell growth rate (defined as the ratio of cell confluence change 
between the confluence at t and t-1) over time in drug-treated uninfected 
conditions. Middle (6 hours of pre-treatment) and right (treatment at the time 
of infection) heatmaps: treatment-induced changes in virus growth over time 
(GFP signal normalized to total cell confluence log2 fold change between the 
treated and control (water, DMSO) conditions). Only non-cytotoxic treatments 

with significant effects on SARS-CoV-2-GFP are shown. Asterisks indicate 
significance of the difference to the control treatment (Wilcoxon test; 
unadjusted two-sided p-value ≤ 0.05, n=4 independent experiments).  
(c) A549-ACE2 cells exposed for 6 hours to the specified concentrations of 
Ipatasertib and infected with SARS-CoV-2-GFP reporter virus (MOI 3). GFP 
signal and cell confluency were analyzed by live-cell imaging for 48 h.p.i. 
Time-courses show virus growth over time as the mean of GFP-positive area 
normalized to the total cell area (n=4 independent experiments). (d-g) mRNA 
expression levels at 24 h.p.i. of SARS-CoV-2 (orange) and SARS-CoV (brown) N 
relative to RPLP0, compared to DMSO-treated cells, as measured by qRT-PCR in 
infected A549-ACE2 cells (MOI 1) pre-treated for 6 hours with (d) Gilteritinib,  
(e) Tirapazamine, (f) Prinomastat or (g) Marimastat. Error bars represent mean 
and standard deviation (Student t-test, two-sided, unadjusted p-value, n=3 
independent experiments). *: p-value ≤ 0.05; **: p-value ≤ 0.01; ***: p-value ≤ 10-3. 
h.p.i.: hours post-infection, MOI: multiplicity of infection.
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Extended Data Table 1 | Functional annotations of the protein-protein interaction network of SARS-CoV-2 and SARS-CoV 
(AP-MS)

Proteins identified as SARS-CoV-2 and/or SARS-CoV host binders via AP-MS (Figure 1b) grouped based on functional enrichment analysis of GOBP, GPCC, GPMF and Reactome terms (Supple-
mentary table 2).
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