Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transition from an atomic to a molecular Bose–Einstein condensate


Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing1,2,3. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules4,5. Here we report the preparation of two-dimensional Bose–Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance6. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen−Cooper−Schrieffer (BCS) superfluid in a Fermi gas7,8,9. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted10,11, such as the A phase of 3He.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Production of g-wave molecular condensate.
Fig. 2: Equation of state of molecular gases.
Fig. 3: Stability of g-wave molecular condensate.
Fig. 4: Unpairing dynamics in a molecular condensate near the g-wave Feshbach resonance at B0 = 19.874 G.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes for the analysis of data shown within this paper are available from the corresponding author upon reasonable request.


  1. 1.

    Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2.

    Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Article  Google Scholar 

  4. 4.

    Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    ADS  Article  Google Scholar 

  7. 7.

    Romans, M. W. J., Duine, R. A., Sachdev, S. & Stoof, H. T. C. Quantum phase transition in an atomic Bose gas with a Feshbach resonance. Phys. Rev. Lett. 93, 020405 (2004).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Radzihovsky, L., Park, J. & Weichman, P. B. Superfluid transitions in bosonic atom-molecule mixtures near a Feshbach resonance. Phys. Rev. Lett. 92, 160402 (2004).

    ADS  Article  Google Scholar 

  9. 9.

    Duine, R. A. & Stoof, H. T. C. Atom–molecule coherence in Bose gases. Phys. Rep. 396, 115–195 (2004).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Anderson, P. W. & Morel, P. Generalized Bardeen–Cooper–Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev. 123, 1911 (1961).

  11. 11.

    Ho, T.-L. The Bose-Einstein condensate of g-wave molecules and its intrinsic angular momentum. Preprint at (2021).

  12. 12.

    Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS-BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Timmermans, E., Furuya, K., Milonni, P. W. & Kerman, A. K. Prospect of creating a composite Fermi-Bose superfluid. Phys. Lett. A 285, 228–233 (2001).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Krüger, P., Hadzibabic, Z. & Dalibard, J. Critical point of an interacting two-dimensional atomic Bose gas. Phys. Rev. Lett. 99, 040402 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    Tung, S., Lamporesi, G., Lobser, D., Xia, L. & Cornell, E. A. Observation of the presuperfluid regime in a two-dimensional Bose gas. Phys. Rev. Lett. 105, 230408 (2010).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Hung, C.-L., Zhang, X., Gemelke, N. & Chin, C. Observation of scale invariance and universality in two-dimensional Bose gases. Nature 470, 236–239 (2011).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Clark, L. W., Gaj, A., Feng, L. & Chin, C. Collective emission of matter-wave jets from driven Bose–Einstein condensates. Nature 551, 356–359 (2017).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Mark, M., Meinert, F., Lauber, K. & Nägerl, H.-C. Mott-insulator-aided detection of ultra-narrow Feshbach resonances. SciPost Phys. 5, 055 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Mark, M. et al. “Stückelberg interferometry” with ultracold molecules. Phys. Rev. Lett. 99, 113201 (2007).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Ho, T.-L. & Zhou, Q. Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nat. Phys. 6, 131–134 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Petrov, D. S. & Shlyapnikov, G. V. Interatomic collisions in a tightly confined Bose gas. Phys. Rev. A 64, 012706 (2001).

    ADS  Article  Google Scholar 

  26. 26.

    Prokof’ev, N. & Svistunov, B. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 66, 043608 (2002).

    ADS  Article  Google Scholar 

  27. 27.

    Prokof’ev, N., Ruebenacker, O. & Svistunov, B. Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett. 87, 270402 (2001).

    Article  Google Scholar 

  28. 28.

    Hadzibabic, Z. & Dalibard, J. Two-dimensional Bose fluids: an atomic physics perspective. Riv. Nuovo Cim. 34, 389–434 (2011).

    ADS  CAS  Google Scholar 

  29. 29.

    Ferlaino, F. et al. Collisions of ultracold trapped cesium Feshbach molecules. Laser Phys. 20, 23–31 (2010).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Chin, C. et al. Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Idziaszek, Z., Jachymski, K. & Julienne, P. S. Reactive collisions in confined geometries. New J. Phys. 17, 035007 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Micheli, A. et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Article  Google Scholar 

  34. 34.

    Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004).

    ADS  Article  Google Scholar 

  36. 36.

    Eigen, C. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Hung, C.-L. In Situ Probing of Two-Dimensional Quantum Gases. Thesis, Univ. Chicago (2011).

  38. 38.

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    ADS  CAS  Article  Google Scholar 

Download references


We thank P. Julienne for discussions and K. Patel for carefully reading the manuscript. This work is supported by National Science Foundation (NSF) grant number PHY-1511696, the Army Research Office Multidisciplinary Research Initiative under grant W911NF-14-1-0003 and the University of Chicago Materials Research Science and Engineering Center, which is funded by the NSF under grant number DMR-1420709.

Author information




L.C. and Z.Z. designed and performed the experiments. Z.Z. analysed the data. All authors contributed to discussions on the experiment and preparation of the manuscript. C.C. supervised the project.

Corresponding author

Correspondence to Cheng Chin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Calibration of magnetic anti-trap potential from the atomic density distribution.

a, Fit of the in situ atomic density profile for determination of the magnetic anti-trap frequencies ωx and ωy using equation (2). The top and right panels show line cuts of the 2D atomic density in the x and y directions, crossing at the centre of the anti-trap. We choose the region within the red dashed circle for fit and extraction of the equation of state. b, Equation of state of atomic BEC shown in a. Each data point represents averaged density within a bin size δμ/h = 0.25 Hz and error bars represent one standard deviation. The black solid line is a linear fit to the data, while the black dashed line is an extrapolation of the fit towards the origin. Data values and error bars are estimated as in Fig. 2 from 20 measurements.

Extended Data Fig. 2 Calibration of the optical potential barrier projected by a DMD from the density response measurement of atomic BEC.

a, Images of in situ atomic column density with different central barrier heights determined by different fractions of micromirrors fDMD that are turned on in the DMD. b, Example measurements of the proportionality p(x, y) for six pixels at different locations. The solid lines are linear fits to the linear part of the data points, the slope of which gives p(x, y). Data values and error bars are estimated as in Fig. 2 from 9–11 measurements. c, Spatial dependence of the proportionality p(x, y). The upper and right panels are line cuts in the x and y directions crossing the peak value. Data values are determined from the fits and the errorbars represent 95% confidence interval.

Extended Data Fig. 3 Fast equilibration of molecules with atoms during the ramp across the Feshbach resonance.

a, Dynamics of the number of molecules during the magnetic field ramp across the Feshbach resonance at 19.87 G with different ramp speeds of 161 mG ms−1 (red), 80 mG ms−1 (blue) and 54 mG ms−1 (green). b, In situ images of molecules during the magnetic field ramp at 80 mG ms−1. Data values and error bars are estimated as in Fig.2 from 5–7 measurements.

Extended Data Fig. 4 Azimuthally averaged density profiles.

These profiles correspond to the atomic (left) and molecular (right) clouds shown in Fig. 2a. The atomic density profile is flat-topped, whereas the molecular density profile has a dip in the middle.

Extended Data Fig. 5 Dynamics of molecular density profiles in the 2D box trap with magnetic anti-trap potential.

The azimuthally averaged molecular density profiles are shown as a function of the hold time after the formation of molecules. The dips in the middle result from the magnetic anti-trap potential and persist during the first 15 ms after formation of the molecules.

Supplementary information

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, L., Yao, KX. et al. Transition from an atomic to a molecular Bose–Einstein condensate. Nature 592, 708–711 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing