Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accelerated global glacier mass loss in the early twenty-first century

Abstract

Glaciers distinct from the Greenland and Antarctic ice sheets are shrinking rapidly, altering regional hydrology1, raising global sea level2 and elevating natural hazards3. Yet, owing to the scarcity of constrained mass loss observations, glacier evolution during the satellite era is known only partially, as a geographic and temporal patchwork4,5. Here we reveal the accelerated, albeit contrasting, patterns of glacier mass loss during the early twenty-first century. Using largely untapped satellite archives, we chart surface elevation changes at a high spatiotemporal resolution over all of Earth’s glaciers. We extensively validate our estimates against independent, high-precision measurements and present a globally complete and consistent estimate of glacier mass change. We show that during 2000–2019, glaciers lost a mass of 267 ± 16 gigatonnes per year, equivalent to 21 ± 3 per cent of the observed sea-level rise6. We identify a mass loss acceleration of 48 ± 16 gigatonnes per year per decade, explaining 6 to 19 per cent of the observed acceleration of sea-level rise. Particularly, thinning rates of glaciers outside ice sheet peripheries doubled over the past two decades. Glaciers currently lose more mass, and at similar or larger acceleration rates, than the Greenland or Antarctic ice sheets taken separately7,8,9. By uncovering the patterns of mass change in many regions, we find contrasting glacier fluctuations that agree with the decadal variability in precipitation and temperature. These include a North Atlantic anomaly of decelerated mass loss, a strongly accelerated loss from northwestern American glaciers, and the apparent end of the Karakoram anomaly of mass gain10. We anticipate our highly resolved estimates to advance the understanding of drivers that govern the distribution of glacier change, and to extend our capabilities of predicting these changes at all scales. Predictions robustly benchmarked against observations are critically needed to design adaptive policies for the local- and regional-scale management of water resources and cryospheric risks, as well as for the global-scale mitigation of sea-level rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Regional glacier mass changes and their temporal evolution from 2000 to 2019.
Fig. 2: Spatial distribution of glacier elevation change between 2000 and 2019.
Fig. 3: Comparison to previous global estimates.
Fig. 4: Decadal patterns of glacier thinning are consistent with decadal variations in precipitation and temperature.

Data availability

Global, regional, tile and per-glacier elevation and mass change time series, elevation change maps for 5-, 10- and 20-year periods at 100 m resolution, and tables in this article are publicly available at https://doi.org/10.6096/13. Source data are provided with this paper.

Code availability

The code developed for the global processing and analysis of all data, and to generate figures and tables in this article, is publicly available at https://github.com/rhugonnet/ww_tvol_study. Code concomitantly developed for processing ASTER data is available as the Python package pymmaster at https://github.com/luc-girod/MMASTER-workflows (with supporting documentation at https://mmaster-workflows.readthedocs.io) and for processing DEM time series as the Python package pyddem at https://github.com/iamdonovan/pyddem (with supporting documentation at https://pyddem.readthedocs.io).

References

  1. 1.

    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    WCRP Global Sea Level Budget Group. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

    ADS  Google Scholar 

  3. 3.

    Stoffel, M. & Huggel, C. Effects of climate change on mass movements in mountain environments. Prog. Phys. Geogr. 36, 421–439 (2012).

    Google Scholar 

  4. 4.

    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) (IPCC, 2019).

  5. 5.

    Gardner, A. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Nerem, R. S. et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).

    ADS  Google Scholar 

  8. 8.

    IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    ADS  Google Scholar 

  9. 9.

    Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019); author correction 10, 5752 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 8, 135–140 (2018).

    ADS  Google Scholar 

  15. 15.

    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (Cambridge University Press, 2014).

  16. 16.

    Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    World Glacier Monitoring Service (WGMS). Fluctuations of Glaciers Database https://wgms.ch/data_databaseversions/ (2019).

  18. 18.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018); corrigendum 13, 099502 (2018).

    ADS  Google Scholar 

  19. 19.

    Wouters, B., Gardner, A. S. & Moholdt, G. Global glacier mass loss during the GRACE satellite mission (2002–2016). Front. Earth Sci. 7, 96 (2019).

    ADS  Google Scholar 

  20. 20.

    Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, 226 (2020).

    Google Scholar 

  21. 21.

    Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines. Technical Report https://www.glims.org/RGI/00_rgi60_TechnicalNote.pdf (Global Land Ice Measurements from Space, 2017).

  23. 23.

    Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

    ADS  Google Scholar 

  24. 24.

    Ablain, M. et al. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth Syst. Sci. Data 11, 1189–1202 (2019).

    ADS  Google Scholar 

  25. 25.

    Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, L11501 (2020).

    Google Scholar 

  26. 26.

    Larsen, C. F. et al. Surface melt dominates Alaska glacier mass balance. Geophys. Res. Lett. 42, 5902–5908 (2015).

    ADS  Google Scholar 

  27. 27.

    Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets. Geophys. J. Int. 215, 415–430 (2018).

    ADS  Google Scholar 

  28. 28.

    Shean, D. E. et al. A systematic, regional assessment of High Mountain Asia glacier mass balance. Front. Earth Sci. 7, 363 (2020).

    ADS  Google Scholar 

  29. 29.

    Braun, M. H. et al. Constraining glacier elevation and mass changes in South America. Nat. Clim. Chang. (2019).

  30. 30.

    Dehecq, A. et al. Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 3870–3882 (2016).

    ADS  Google Scholar 

  31. 31.

    Sandberg Sørensen, L. et al. 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry. Earth Planet. Sci. Lett. 495, 234–241 (2018).

    ADS  Google Scholar 

  32. 32.

    Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl Acad. Sci. USA 116, 1934–1939 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Garreaud, R. D. et al. The Central Chile Mega Drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40, 421–439 (2020).

    Google Scholar 

  34. 34.

    Raper, S. C. B. & Braithwaite, R. J. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439, 311–313 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Parkes, D. & Marzeion, B. Twentieth-century contribution to sea-level rise from uncharted glaciers. Nature 563, 551–554 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 32, 355–371 (2009).

    Google Scholar 

  37. 37.

    Tielidze, L. G. & Wheate, R. D. The Greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan). Cryosphere 12, 81–94 (2018).

    ADS  Google Scholar 

  38. 38.

    Dunse, T. et al. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. Cryosphere 9, 197–215 (2015).

    ADS  Google Scholar 

  39. 39.

    McMillan, M. et al. Rapid dynamic activation of a marine-based Arctic ice cap: ice cap dynamic activation. Geophys. Res. Lett. 41, 8902–8909 (2014).

    ADS  Google Scholar 

  40. 40.

    Nuth, C. et al. Dynamic vulnerability revealed in the collapse of an Arctic tidewater glacier. Sci. Rep. 9, 5541 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Howat, I. M., Negrete, A. & Smith, B. E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).

    ADS  Google Scholar 

  42. 42.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    ADS  Google Scholar 

  43. 43.

    NASA/METI/AIST/Japan Spacesystems & U.S./Japan ASTER Science Team. ASTER Level 1A Data Set – Reconstructed, Unprocessed Instrument Data. 2001, NASA EOSDIS Land Processes DAAC, 2001); https://doi.org/10.5067/ASTER/AST_L1A.003.

  44. 44.

    Porter, C. et al. ArcticDEM (Harvard Dataverse, 2018); https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH.

  45. 45.

    Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).

    ADS  Google Scholar 

  46. 46.

    Rizzoli, P. et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 132, 119–139 (2017).

    ADS  Google Scholar 

  47. 47.

    Vassilaki, D. I. & Stamos, A. A. TanDEM-X DEM: comparative performance review employing LIDAR data and DSMs. ISPRS J. Photogramm. Remote Sens. 160, 33–50 (2020).

    Google Scholar 

  48. 48.

    Nuth, C. & Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5, 271–290 (2011).

    ADS  Google Scholar 

  49. 49.

    Rupnik, E., Daakir, M. & Pierrot Deseilligny, M. MicMac – a free, open-source solution for photogrammetry. Open Geospat. Data Softw. Stand. 2, 14 (2017).

    Google Scholar 

  50. 50.

    Girod, L., Nuth, C., Kääb, A., McNabb, R. & Galland, O. MMASTER: improved ASTER DEMs for elevation change monitoring. Remote Sens. 9, 704 (2017).

    Google Scholar 

  51. 51.

    Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    CAS  Google Scholar 

  52. 52.

    Noh, M.-J. & Howat, I. M. The surface extraction from TIN based Search-space Minimization (SETSM) algorithm. ISPRS J. Photogramm. Remote Sens. 129, 55–76 (2017).

    ADS  Google Scholar 

  53. 53.

    Dussaillant, I. et al. Two decades of glacier mass loss along the Andes. Nat. Geosci. 12, 802–808 (2019); author correction 13, 711 (2020).

    ADS  CAS  Google Scholar 

  54. 54.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 10, 668–673 (2017); author correction 11, 543 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Toutin, T. Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Trans. Geosci. Remote Sens. 40, 2241–2247 (2002).

    ADS  Google Scholar 

  56. 56.

    Lacroix, P. Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes. Earth Planets Space 68, 1–10 (2016).

    Google Scholar 

  57. 57.

    Shean, D. E. et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101–117 (2016).

    ADS  Google Scholar 

  58. 58.

    Höhle, J. & Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 64, 398–406 (2009).

    ADS  Google Scholar 

  59. 59.

    Williams, C. K. I. & Rasmussen, C. E. Gaussian Processes for Machine Learning Vol. 2 (MIT Press, 2006).

  60. 60.

    Schiefer, E., Menounos, B. & Wheate, R. Recent volume loss of British Columbian glaciers, Canada. Geophys. Res. Lett. (2007).

  61. 61.

    Nuimura, T., Fujita, K., Yamaguchi, S. & Sharma, R. R. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol. 58, 648–656 (2012).

    ADS  Google Scholar 

  62. 62.

    Willis, M. J., Melkonian, A. K., Pritchard, M. E. & Rivera, A. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett. 39, L17501 (2012).

    ADS  Google Scholar 

  63. 63.

    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Zwally, H. J., Schutz, R., Hancock, D. & Dimarzio, J. GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5), Version 34 (NASA Snow and Ice Data Center, 2014); https://nsidc.org/data/GLAH14.

  65. 65.

    Alexandrov, O., McMichael, S. & Beyer., R. A. IceBridge DMS L3 Ames Stereo Pipeline Photogrammetric DEM, Version 1 (accessed 1 June 2019); https://nsidc.org/data/IODEM3/versions/1.

  66. 66.

    Larsen, C. IceBridge UAF Lidar Scanner L1B Geolocated Surface Elevation Triplets, Version 1 (accessed 20 February 2020); https://nsidc.org/data/ILAKS1B/versions/1.

  67. 67.

    Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 5, 537–548 (2018).

    ADS  Google Scholar 

  68. 68.

    Harding, D. J. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 32, L21S10 (2005).

    Google Scholar 

  69. 69.

    Gardelle, J., Berthier, E. & Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 58, 419–422 (2012).

    ADS  Google Scholar 

  70. 70.

    McNabb, R., Nuth, C., Kääb, A. & Girod, L. Sensitivity of glacier volume change estimation to DEM void interpolation. Cryosphere 13, 895–910 (2019).

    ADS  Google Scholar 

  71. 71.

    Cressie, N. A. C. Statistics for Spatial Data Vol. 4, 613–617 (Wiley, 1993).

  72. 72.

    Rolstad, C., Haug, T. & Denby, B. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J. Glaciol. 55, 666–680 (2009).

    ADS  Google Scholar 

  73. 73.

    Dehecq, A. et al. Automated processing of declassified KH-9 Hexagon satellite images for global elevation change analysis since the 1970s. Front. Earth Sci. 8, 566802 (2020).

    Google Scholar 

  74. 74.

    Menounos, B. et al. Heterogeneous changes in western North American glaciers linked to decadal variability in zonal wind strength. Geophys. Res. Lett. 46, 200–209 (2018).

    ADS  Google Scholar 

  75. 75.

    Howat, I. M., Smith, B. E., Joughin, I. & Scambos, T. A. Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys. Res. Lett. 35, L17505 (2008).

    ADS  Google Scholar 

  76. 76.

    Wang, D. & Kääb, A. Modeling glacier elevation change from DEM time series. Remote Sens. 7, 10117–10142 (2015).

    ADS  Google Scholar 

  77. 77.

    Cogley, J. G. & Adams, W. P. Mass balance of glaciers other than the ice sheets. J. Glaciol. 44, 315–325 (1998).

    ADS  CAS  Google Scholar 

  78. 78.

    Journel, A. G. & Huijbregts, C. J. Mining Geostatistics Vol. 600 (Academic Press, 1978).

  79. 79.

    Webster, R. & Oliver, M. A. Geostatistics for Environmental Scientists (John Wiley & Sons, 2007).

  80. 80.

    Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. R J. 8, 204 (2016).

    Google Scholar 

  81. 81.

    Mälicke, M. & Schneider, H. D. Scikit-GStat 0.2.6: A Scipy Flavored Geostatistical Analysis Toolbox Written in Python (2019); https://zenodo.org/record/3531816#.YFsJ737Le00.

  82. 82.

    Dussaillant, I., Berthier, E. & Brun, F. Geodetic mass balance of the Northern Patagonian Icefield from 2000 to 2012 using two independent methods. Front. Earth Sci. 6, 8 (2018).

    ADS  Google Scholar 

  83. 83.

    Berthier, E., Scambos, T. A. & Shuman, C. A. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys. Res. Lett. 39, L13501 (2012).

    ADS  Google Scholar 

  84. 84.

    Granshaw, F. D. & Fountain, A. G. Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol. 52, 251–256 (2006).

    ADS  CAS  Google Scholar 

  85. 85.

    Pfeffer, W. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    ADS  Google Scholar 

  86. 86.

    Rastner, P. et al. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 6, 1483–1495 (2012).

    ADS  Google Scholar 

  87. 87.

    Bolch, T., Menounos, B. & Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 114, 127–137 (2010).

    ADS  Google Scholar 

  88. 88.

    Pelto, B. M., Menounos, B. & Marshall, S. J. Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada. Cryosphere 13, 1709–1727 (2019).

    ADS  Google Scholar 

  89. 89.

    Wagnon, P. et al. Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere 7, 1769–1786 (2013).

    ADS  Google Scholar 

  90. 90.

    Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B. & Rémy, F. Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci. 3, 92–95 (2010).

    ADS  CAS  Google Scholar 

  91. 91.

    Berthier, E., Cabot, V., Vincent, C. & Six, D. Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc area. Front. Earth Sci. 4, 63 (2016).

    ADS  Google Scholar 

  92. 92.

    Glacier Monitoring Switzerland. Swiss Glacier Volume Change, Release 2018 (2018); https://doi.glamos.ch/data/volumechange/volumechange_2018_r2018.html.

  93. 93.

    Bauder, A., Funk, M. & Huss, M. Ice-volume changes of selected glaciers in the Swiss Alps since the end of the 19th century. Ann. Glaciol. 46, 145–149 (2007).

    ADS  Google Scholar 

  94. 94.

    Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R. & Arnaud, Y. Region-wide annual glacier surface mass balance for the European Alps from 2000 to 2016. Front. Earth Sci. 8, 149 (2020).

    ADS  Google Scholar 

  95. 95.

    Schuler, T. V. et al. Reconciling Svalbard Glacier mass balance. Front. Earth Sci. 8, 523646 (2020).

    Google Scholar 

  96. 96.

    Aðalgeirsdóttir, G. et al. Glacier Changes in Iceland From ~1890 to 2019. Front. Earth Sci. 8, 520 (2020).

    ADS  Google Scholar 

  97. 97.

    Hersbach, H. & Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 147, 5–6 (2016).

    Google Scholar 

  98. 98.

    Skliris, N., Zika, J. D., Nurser, G., Josey, S. A. & Marsh, R. Global water cycle amplifying at less than the Clausius–Clapeyron rate. Sci. Rep. 6, 38752 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Sakakibara, D., Sugiyama, S., Sawagaki, T., Marinsek, S. & Skvarca, P. Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Ann. Glaciol. 54, 131–138 (2013).

    ADS  Google Scholar 

  100. 100.

    Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Porter for discussions on ArcticDEM and REMA DEMs, B. Meyssignac for comments on sea-level rise and A. Dehecq for input on the presentation of the manuscript. The GLIMS initiative (in particular J. Kargel and B. Raup) allowed the population of a vast archive of ASTER stereo images over glaciers. Hakai Institute and the University of Northern British Columbia provided computational resources for processing ASTER stereo imagery. SPOT6/7 data were obtained from GEOSUD (ANR-10-EQPX-20, programme ‘Investissements d’Avenir’). ArcticDEM DEMs were provided by the Polar Geospatial Center under NSF-OPP awards 1043681, 1559691 and 1542736 and REMA DEMs were provided by the Byrd Polar and Climate Research Center and the Polar Geospatial Center under NSF-OPP awards 1543501, 1810976, 1542736, 1559691, 1043681, 1541332, 0753663, 1548562, 1238993 and NASA award NNX10AN61G. Computer time was provided through a Blue Waters Innovation Initiative. DEMs were produced using data from DigitalGlobe, Inc. R.H. acknowledges a fellowship from the University of Toulouse. E.B. acknowledges support from the French Space Agency (CNES) through ISIS and TOSCA programmes. R.M., C.N., L.G. and A.K. acknowledge support by ESA through Glaciers_cci and EE10 (4000109873/14/I-NB, 4000127593/19/I-NS, 4000127656/19/NL/FF/gp), and by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement number 320816. B.M. acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program, the Tula Foundation and Global Water Futures. R.H., D.F. and M.H. acknowledge funding from the Swiss National Science Foundation, grant number 184634.

Author information

Affiliations

Authors

Contributions

E.B. and R.H. designed the study with contributions from D.F., M.H. and B.M. L.G., C.N., R.M. and A.K. developed ASTER bias-correction methods. R.H. and R.M. developed glacier elevation GP methods. R.H. implemented spatial statistics methods with inputs from F.B. B.M. assembled and analysed ERA5 data. R.H. performed the processing and analysis of all data with main inputs from E.B., as well as R.M., B.M., D.F., M.H., I.D. and F.B. All authors interpreted the results. R.H. led the writing of the paper and all other co-authors contributed.

Corresponding author

Correspondence to Romain Hugonnet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Beata Csatho, Thomas Frederikse, Michael Willis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Flow chart of the methodology.

Flow diagram describing the processing steps from satellite imagery to global glacier mass change time series. Processing steps correspond to sections in Methods.

Extended Data Fig. 2 Spatial and temporal coverage of ASTER, ArcticDEM and REMA DEMs.

ac, Spatial distribution of DEMs as a strip count for ArcticDEM strips above 50° N (a), ASTER DEM strips (b) and REMA strips below 50° S (c), shown on top of a world hillshade36. 67,986 ArcticDEM and 9,369 REMA strips are counted before co-registration to TanDEM-X. This later reduces their number to 40,391 and 3,456, respectively, owing to the limited stable terrain in polar regions. d, Temporal distribution of the strip count as a bi-mensual histogram from January 2000 to December 2019. We note that ArcticDEM and REMA strip footprints (15 km × 50 km) are generally much smaller than ASTER DEM strip footprints (180 km × 60 km).

Extended Data Fig. 3 Elevation time series estimation.

ae, Empirical and modelled elevation measurement error (a) and temporal covariance of glacier elevation (b) estimated globally. These are used to condition the filtering (c, d) and elevation time series estimation (e) of elevation observations, illustrated here for a 100 m × 100 m pixel on the ablation area of Upsala, where a strong nonlinear elevation loss occurred99. a, Squared measurement error, estimated by the squared NMAD of elevation differences to TanDEM-X on stable terrain as a function of terrain slope and of quality of stereo-correlation. We express the quality of stereo-correlation as a percentage ranging from 0% for poor correlations to 100% for good correlations. b, Variance between pairwise glacier elevations in time, or temporal variogram. The empirical temporal variogram is derived from the aggregated median of variances binned by time lags of 0.25 yr. Here, pixels were selected on glacierized terrain showing a linear trend of elevation change (estimated from weighted least squares) between −1.5 and −1.0 m yr−1. The median of the linear trend at these locations (−1.2 m yr−1) was directly used to derive the linear model (orange), which has a quadratic variance. The other models are calibrated so that their sum (dashed black line) matches the empirical variogram. c, Spatial and temporal filtering by conditioning a maximum linear elevation change rate from the neighbouring TanDEM-X elevations (see Supplementary Information for further details). d, Filtering by successive GP regression fits for credible intervals of size 20σ, 12σ, 9σ, 6σ and 4σ. e, Elevation time series of final GP regression after the removal of outliers.

Extended Data Fig. 4 Validation of elevation time series and uncertainties to ICESat and IceBridge.

ad, ICESat64 and IceBridge65,66 measurements compared to our surface elevation time series over glacierized terrain in the Saint-Elias Mountains, Alaska (ac) and at the global scale (d). b, Absolute z-scores (white to purple) are shown on top of the 2000–2019 surface elevation change. z-scores correspond to elevation differences to ICESat (dashed outlines) or IceBridge (solid outlines), standardized by our time series uncertainty. c, Time series for a 100 m × 100 m pixel extracted on the tongue of Agassiz Glacier with neighbouring ICESat and IceBridge elevation differences for demonstration purposes. d, Summary of global validation statistics for categories of time, season, region, elevation, observation time lag and total elevation change, with density distributions of measurements for ICESat (light grey) and IceBridge (dark grey). Mean elevation differences, subject to snow-cover biases, are shown only by region (summer mean) and by two-month seasonal component (difference to the annual mean) for each hemisphere.

Extended Data Fig. 5 Uncertainty analysis of volume changes and validation using high-resolution DEMs.

ah, Spatial correlation of elevations between the GP time series and ICESat with the time lag to the closest ASTER, ArcticDEM or REMA observation (a, b), propagation of correlations into specific-volume change uncertainties (c), validation of volume change estimates and uncertainties to high-resolution volume changes extracted over the same 588 glaciers and periods (df) and contribution from all uncertainty sources to the 2000–2019 specific-mass change estimates (g, h). a, An empirical spatial variogram is shown and fitted with a sum of spherical models at correlation lengths of 0.15, 2, 5, 20, 50, 200 and 500 km for elevation differences sampled at 720 days (2 years) from the closest observation. b, Spatially correlated variances as a function of the time lag to the closest observation. The model for the variance used during uncertainty propagation is shown in plain lines (sum of quadratic and squared sinusoidal functions optimized by least squares). c, Propagation of elevation change uncertainties to volume change uncertainties with varying glacier area. As this computation is specific to the time lag of each pixel to the closest observation, for each glacier, at each time step, c refers to an example. The spatial correlations are computed for a time lag to the closest observation, representing the average of our study, of 0–1 yr for 50% of observations, 1–2 yr for 20% of observations, 2–3 yr for 20% of observations and 3–4 yr for 10% of observations. We assume a mean pixel-wise uncertainty of 10 m and simplify by considering only the first step of integration over a continuous glacierized area (equation (5)). This assumption leads to slightly larger contributions from short-range correlations than with further propagation to the second propagation step between discontinuous glaciers (equation (6)). Uncertainties are largely dominated by short- to long-range spatial correlations. d, Comparison of specific-volume changes per glacier with 1σ uncertainties. The mean of differences in estimates over all glaciers does not statistically differ from zero. e, f, Theoretical and empirical 1σ uncertainties, and their evolution with glacier size. The theoretical uncertainty is the mean of per-glacier uncertainties derived from spatially integrated variograms and the empirical uncertainty is the NMAD of the difference between high-resolution and GP estimates. g, h, Propagation of uncertainty sources to specific-mass changes for each RGI 6.0 region, and all glaciers with and without the Greenland Periphery and the Antarctic and Subantarctic, which are magnified in h. Uncertainties are largely dominated by the volume-to-mass conversion uncertainties globally, and by uncertainties in glacier outlines for regions with a relevant share of small glaciers.

Extended Data Fig. 6 Two decades of elevation change over various regions.

ah, Elevation change of glaciers between 2000 and 2019 in Coropuna, Peru (a), Pamir Mountains (b), Iceland (c), Karakoram Mountains (d), European Alps (e), Southern Alps, New Zealand (f), West Greenland (note the rotated orientation of map) (g) and Svalbard (h). Except for Svalbard, glacier outlines displayed are from the RGI 6.0. In the background is shown a hillshade derived from several sources36,46,100. In Svalbard, outlines have been updated to include the massive surges of Austfonna Basin 338,39 in the northeast and Nathorstbreen in the southwest40, indicated by blue arrows.

Extended Data Fig. 7 Global evolution of 5-year thinning rates.

ad, Mean elevation change rates aggregated by tiles of 1° × 1° for the periods 2000–2004 (a), 2005–2009 (b), 2010–2014 (c) and 2015–2019 (d). The tile area is inversely scaled to the squared 95% confidence interval of the mean elevation change in the tile, and tiles are coloured with mean elevation change rates, on top of a world hillshade36. The minimum tile area is 10% for a 95% confidence interval larger than 2 m yr−1 and tiles are displayed at full size for a 95% confidence interval smaller than 0.5 m yr−1. Region labelling refers to that of Fig. 2. The acceleration of thinning brings the Karakoram anomaly to its apparent end.

Extended Data Table 1 Regional rates of glacier elevation and mass change from 2000 to 2019
Extended Data Table 2 Regional data coverage of elevation time series from 2000 to 2019
Extended Data Table 3 Regional rates of land- and marine-terminating glaciers in maritime regions

Supplementary information

Supplementary Information

This file contains the Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–9 and Supplementary Tables 1–3.

Supplementary Table 4

Comparison to IPCC SROCC Table 2A.1 with estimates from this study for periods 2006–2015 and 2000–2019 and recent regional studies (blue). An additional decimal is shown for mass balance rates in Gt yr−1 and mm SLE yr−1. Regions are shown in SROCC ordering. SROCC estimates were combined using the most suitable studies (methods ‘xxx’ and ‘x’).

Peer Review File

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hugonnet, R., McNabb, R., Berthier, E. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021). https://doi.org/10.1038/s41586-021-03436-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing