Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Jets from MRC 0600-399 bent by magnetic fields in the cluster Abell 3376


Galaxy clusters are known to harbour magnetic fields, the nature of which remains unresolved. Intra-cluster magnetic fields can be observed at the density contact discontinuity formed by cool and dense plasma running into hot ambient plasma1,2, and the discontinuity exists3 near the second-brightest galaxy4, MRC 0600-399, in the merging galaxy cluster Abell 3376 (redshift 0.0461). Elongated X-ray emission in the east–west direction shows a comet-like structure that reaches the megaparsec scale5. Previous radio observations6,7 detected the bent jets from MRC 0600-399, moving in same direction as the sub-cluster, against ram pressure. Here we report radio8,9 observations of MRC 0600-399 that have 3.4 and 11 times higher resolution and sensitivity, respectively, than the previous results6. In contrast to typical jets10,11, MRC 0600-399 shows a 90-degree bend at the contact discontinuity, and the collimated jets extend over 100 kiloparsecs from the point of the bend. We see diffuse, elongated emission that we name ‘double-scythe’ structures. The spectral index flattens downstream of the bend point, indicating cosmic-ray reacceleration. High-resolution numerical simulations reveal that the ordered magnetic field along the discontinuity has an important role in the change of jet direction. The morphology of the double-scythe jets is consistent with the simulations. Our results provide insights into the effect of magnetic fields on the evolution of the member galaxies and intra-cluster medium of galaxy clusters.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multi-wavelength view of A3376 and MRC 0600-399.
Fig. 2: Radio properties derived from MeerKAT observation.
Fig. 3: Numerical simulations of the interaction between jets and intra-cluster magnetic fields.
Fig. 4: Schematic drawing of the proposed scenario.

Data availability

The raw MeerKAT data used in this work can be accessed at (project ID: SCI-20190418-JC-01). The calibrated MeerKAT data and images that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Markevitch, M. et al. Chandra observation of Abell 2142: survival of dense subcluster cores in a merger. Astrophys. J. 541, 542–549 (2000).

    ADS  Article  Google Scholar 

  2. 2.

    Vikhlinin, A., Markevitch, M. & Murray, S. S. A moving cold front in the intergalactic medium of A3667. Astrophys. J. 551, 160–171 (2001).

    ADS  Article  Google Scholar 

  3. 3.

    Urdampilleta, I. et al. X-ray study of the double radio relic Abell 3376 with Suzaku. Astron. Astrophys. 618, A74 (2018).

    Article  Google Scholar 

  4. 4.

    Durret, F. et al. The merging cluster of galaxies Abell 3376: an optical view. Astron. Astrophys. 560, A78 (2013).

    Article  Google Scholar 

  5. 5.

    Machado, R. E. G. & Lima Neto, G. B. Simulations of the merging galaxy cluster Abell 3376. Mon. Not. R. Astron. Soc. 430, 3249–3260 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Bagchi, J., Durret, F., Neto, G. B. L. & Paul, S. Giant ringlike radio structures around galaxy cluster Abell 3376. Science 314, 791–794 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kale, R. et al. Spectral and polarization study of the double relics in Abell 3376 using the Giant Metrewave Radio Telescope and the Very Large Array. Mon. Not. R. Astron. Soc. 426, 1204–1211 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Jonas, J. & MeerKAT Team. The MeerKAT radio telescope. In MeerKAT Science: On the Pathway to the SKA, 1 (PoS, 2016).

  9. 9.

    Mauch, T. et al. The 1.28 GHz MeerKAT DEEP2 image. Astrophys. J. 888, 61 (2020).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Owen, F. N. & Rudnick, L. Radio sources with wide-angle tails in Abell clusters of galaxies. Astrophys. J. Lett. 205, 1–4 (1976).

    ADS  Article  Google Scholar 

  11. 11.

    Jones, T. W. & Owen, F. N. Hot gas in elliptical galaxies and the formation of head-tail radio sources. Astrophys. J. 234, 818–824 (1979).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Markevitch, M. & Vikhlinin, A. Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    Gunn, J. E., Gott, I. & Richard, J. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1 (1972).

    ADS  Article  Google Scholar 

  14. 14.

    Donnert, J., Vazza, F., Brüggen, M. & ZuHone, J. magnetic field amplification in galaxy clusters and its simulation. Space Sci. Rev. 214, 122 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    ZuHone, J. A. & Roediger, E. Cold fronts: probes of plasma astrophysics in galaxy clusters. J. Plasma Phys. 82, 535820301 (2016).

    Article  Google Scholar 

  16. 16.

    Werner, N. et al. Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky. Mon. Not. R. Astron. Soc. 455, 846–858 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Walker, S. A., ZuHone, J., Fabian, A. & Sanders, J. The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Nolting, C., Jones, T. W., O’Neill, B. J. & Mendygral, P. J. Interactions between radio galaxies and cluster shocks. I. Jet axes aligned with shock normals. Astrophys. J. 876, 154 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Lal, D. V. NGC 4869 in the Coma cluster: twist, wrap, overlap and bend. Astron. J. 160, 161 (2020).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Takizawa, M. Hydrodynamic simulations of a moving substructure in a cluster of galaxies: cold fronts and turbulence generation. Astrophys. J. 629, 791–796 (2005).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Asai, N., Fukuda, N. & Matsumoto, R. Three-dimensional magnetohydrodynamic simulations of cold fronts in magnetically turbulent ICM. Astrophys. J. 663, 816–823 (2007).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    ZuHone, J. A., Markevitch, M. & Lee, D. Sloshing of the magnetized cool gas in the cores of galaxy clusters. Astrophys. J. 743, 16 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Chen, H., Jones, C., Andrade-Santos, F., ZuHone, J. A. & Li, Z. Gas sloshing in Abell 2204: constraining the properties of the magnetized intracluster medium. Astrophys. J. 838, 38 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Matsumoto, Y. et al. Magnetohydrodynamic simulation code CANS+: assessments and applications. Publ. Astron. Soc. Jpn 71, 83 (2019).

    ADS  Article  Google Scholar 

  25. 25.

    Hallman, E. J. & Markevitch, M. Chandra observation of the merging cluster A168: a late stage in the evolution of a cold front. Astrophys. J. 610, L81–L84 (2004).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Sheardown, A. et al. A new class of X-ray tails of early-type galaxies and subclusters in galaxy clusters: slingshot tails versus ram pressure stripped tails. Astrophys. J. 874, 112 (2019).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Hickish, J. et al. A Decade of Developing Radio-Astronomy Instrumentation using CASPER Open-Source Technology. J. Astron. Instrum. 5, 1641001–1641012 (2016).

    Article  Google Scholar 

  28. 28.

    Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012).

    Article  Google Scholar 

  29. 29.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127 (2007).

    ADS  Google Scholar 

  30. 30.

    Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Kenyon, J. S., Smirnov, O. M., Grobler, T. L. & Perkins, S. J. CUBICAL – fast radio interferometric calibration suite exploiting complex optimization. Mon. Not. R. Astron. Soc. 478, 2399–2415 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Eckert, D. et al. The gas distribution in the outer regions of galaxy clusters. Astron. Astrophys. 541, A57 (2012).

    Article  Google Scholar 

  33. 33.

    Wang, Q. H. S., Markevitch, M. & Giacintucci, S. The merging galaxy cluster A520—a broken-up cool core, a dark subcluster, and an X-ray channel. Astrophys. J. 833, 99 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Koide, S., Sakai, J.-I., Nishikawa, K.-I. & Mutel, R. L. Numerical simulation of bent jets: propogation into an oblique magnetic field. Astrophys. J. 464, 724 (1996).

    ADS  Article  Google Scholar 

  35. 35.

    Rybicki, G. B. and Lightman, A. P. Radiative Processes in Astrophysics (Wiley-VCH, 1985).

  36. 36.

    Bicknell, G. V., Mukherjee, D., Wagner, A. Y., Sutherland, R. S. & Nesvadba, N. P. H. Relativistic jet feedback – II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies. Mon. Not. R. Astron. Soc. 475, 3493–3501 (2018).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Komarov, S., Reynolds, C. & Churazov, E. Propagation of weak shocks in cool-core galaxy clusters in two-temperature magnetohydrodynamics with anisotropic thermal conduction. Mon. Not. R. Astron. Soc. 497, 1434–1442 (2020).

    ADS  Article  Google Scholar 

  38. 38.

    Cavagnolo, K. W., Donahue, M., Voit, G. M. & Sun, M. Intracluster medium entropy profiles for a Chandra archival sample of galaxy clusters. Astrophys. J. Suppl. Ser. 182, 12–32 (2009).

    ADS  CAS  Article  Google Scholar 

  39. 39.

    Tajima, T. & Shibata, K. Plasma Astrophysics (Basic Books, 1997).

Download references


J.O.C. acknowledges support from the Italian Ministry of Foreign Affairs and International Cooperation (MAECI grant number ZA18GR02) and the South African Department of Science and Technology’s National Research Foundation (DST-NRF grant number 113121) as part of the ISARP RADIOSKY2020 Joint Research Scheme. V.P. acknowledges financial assistance from the South African Radio Astronomy Observatory (SARAO) and the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. This study makes use of MeerKAT data (project ID: SCI-20190418-JC-01). The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation (DSI). SRON is supported financially by NWO, the Netherlands Organization for Scientific Research. Numerical computations and analyses were partially carried out on Cray XC50 and analysis servers, respectively, at the Center for Computational Astrophysics, National Astronomical Observatory of Japan. The computation was carried out using the computer resources at the Research Institute for Information Technology, Kyushu University. This work was supported by JSPS KAKENHI grant numbers 20J13339 (H.S.), 20J12591 (T.O.), 19K03916, 20H01941 (M.M.) and 17H01110 and 19H05076 (T.T.T.). T.T.T. was also supported in part by the Sumitomo Foundation Fiscal 2018 Grant for Basic Science Research Projects (180923) and Collaboration Funding of the Institute of Statistical Mathematics “New Development of the Studies on Galaxy Evolution with a Method of Data Science”. The development of SAOImageDS9 software ( was made possible by funding from the Chandra X-ray Science Center (CXC), the High Energy Astrophysics Science Archive Center (HEASARC) and the JWST Mission office at the Space Telescope Science Institute. This research used Astropy, a community-developed core Python package for Astronomy.

Author information




J.O.C. conducted the observations and data reduction. V.P. participated in the MeerKAT data reduction, and H.S. analysed the results and processed their implementations. T.O. and M.M. constructed the theory and model and conducted the numerical simulations. H.A. performed X-ray data analysis and wrote the scientific discussion. T.A. contributed to the writing of the MeerKAT proposal and the scientific discussion. T.T.T., R.v.R. and H.N. contributed to the scientific discussions. All authors reviewed the manuscript.

Corresponding authors

Correspondence to James O. Chibueze, Haruka Sakemi or Takumi Ohmura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Joydeep Bagchi and Maxim Markevitch for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chibueze, J.O., Sakemi, H., Ohmura, T. et al. Jets from MRC 0600-399 bent by magnetic fields in the cluster Abell 3376. Nature 593, 47–50 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing