This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Data availability
The data within this paper and findings of this study are available from the corresponding author upon reasonable request.
References
Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015).
Deng, Y.-H. Perovskite decomposition and missing crystal planes in HRTEM. Nature https://doi.org/10.1038/s41586-021-03423-4 (2021).
Chen, S. et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 9, 4807 (2018).
Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).
Gao, L. et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16, 7446–7454 (2016).
Kollek, T. et al. Porous and shape-anisotropic single crystals of the semiconductor perovskite CH3NH3PbI3 from a single-source precursor. Angew. Chem. Int. Ed. 54, 1341–1346 (2015).
Son, D. Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).
Long, M. et al. Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells. Nano Energy 33, 485–496 (2017).
Zhu, F. et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano 9, 2948–2959 (2015).
Fan, Z. et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 1, 548–562 (2017).
Jung, Y. K., Butler, K. T. & Walsh, A. Halide perovskite heteroepitaxy: bond formation and carrier confinement at the PbS–CsPbBr3 interface. J. Phys. Chem. C 121, 27351–27356 (2017).
Sytnyk, M. et al. Quasi-epitaxial metal–halide perovskite ligand shells on PbS nanocrystals. ACS Nano 11, 1246–1256 (2017).
Zhang, X. et al. Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 8, 1702049 (2018).
Liu, M. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96–101 (2019).
Masi, S. et al. Chemi-structural stabilization of formamidinium lead iodide perovskite by using embedded quantum dots. ACS Energy Lett. 5, 418–427 (2020).
Zhang, X. et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures. ACS Cent. Sci. 4, 1352–1359 (2018).
Peng, J., Chen, Y., Zhang, X., Dong, A. & Liang, Z. Solid-state ligand-exchange fabrication of CH3NH3PbI3 capped PbS quantum dot solar cells. Adv. Sci. 3, 1500432 (2015).
Acknowledgements
The TEM characterization was supported by the Center for High-resolution Electron Microscopy (ChEM) at ShanghaiTech University. We thank Y. Yu, B. Yuan and K. Xu at ShanghaiTech University for the TEM measurement. We thank Y. Li at Stanford University for discussions.
Author information
Authors and Affiliations
Contributions
X.G., Z.N., O.V. and E.H.S. designed and directed this study. Z.N. led the experimental work. X.G., Z.N., O.V. and E.H.S. wrote the manuscript. R.C., F.F., E.Y. and S.H. participated in discussions. All authors contributed to reviewing and commenting on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ning, Z., Gong, X., Comin, R. et al. Reply to: Perovskite decomposition and missing crystal planes in HRTEM. Nature 594, E8–E9 (2021). https://doi.org/10.1038/s41586-021-03424-3
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-03424-3