Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liquid-induced topological transformations of cellular microstructures

Abstract

The fundamental topology of cellular structures—the location, number and connectivity of nodes and compartments—can profoundly affect their acoustic1,2,3,4, electrical5, chemical6,7, mechanical8,9,10 and optical11 properties, as well as heat1,12, fluid13,14 and particle transport15. Approaches that harness swelling16,17,18, electromagnetic actuation19,20 and mechanical instabilities21,22,23 in cellular materials have enabled a variety of interesting wall deformations and compartment shape alterations, but the resulting structures generally preserve the defining connectivity features of the initial topology. Achieving topological transformation presents a distinct challenge for existing strategies: it requires complex reorganization, repacking, and coordinated bending, stretching and folding, particularly around each node, where elastic resistance is highest owing to connectivity. Here we introduce a two-tiered dynamic strategy that achieves systematic reversible transformations of the fundamental topology of cellular microstructures, which can be applied to a wide range of materials and geometries. Our approach requires only exposing the structure to a selected liquid that is able to first infiltrate and plasticize the material at the molecular scale, and then, upon evaporation, form a network of localized capillary forces at the architectural scale that ‘zip’ the edges of the softened lattice into a new topological structure, which subsequently restiffens and remains kinetically trapped. Reversibility is induced by applying a mixture of liquids that act separately at the molecular and architectural scales (thus offering modular temporal control over the softening–evaporation–stiffening sequence) to restore the original topology or provide access to intermediate modes. Guided by a generalized theoretical model that connects cellular geometries, material stiffness and capillary forces, we demonstrate programmed reversible topological transformations of various lattice geometries and responsive materials that undergo fast global or localized deformations. We then harness dynamic topologies to develop active surfaces with information encryption, selective particle trapping and bubble release, as well as tunable mechanical, chemical and acoustic properties.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Strategy for topological transformation of cellular structures.
Fig. 2: Experimental characterization of the assembly and disassembly of a triangular lattice.
Fig. 3: Generalization of topological transformation principle.
Fig. 4: Exemplary applications of lattice structures undergoing topological transformations.

Data availability

The data supporting the findings of this study are included within the paper and its Supplementary Information files and are available from the corresponding author upon reasonable request.

References

  1. Gibson, L., Ashby, M. & Harley, B. Cellular Materials in Nature and Medicine (Cambridge Univ. Press, 2010).

  2. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure, Properties and Applications (Cambridge Univ. Press, 1999).

  3. Ruzzene, M., Scarpa, F. & Soranna, F. Wave beaming effects in two-dimensional cellular structures. Smart Mater. Struct. 12, 363–372 (2003).

    Article  ADS  Google Scholar 

  4. He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kang, S. et al. Stretchable lithium-ion battery based on re-entrant micro-honeycomb electrodes and cross-linked gel electrolyte. ACS Nano 14, 3660–3668 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Shirman, E. et al. Modular design of advanced catalytic materials using hybrid organic–inorganic raspberry particles. Adv. Funct. Mater. 28, 1704559 (2018).

    Article  Google Scholar 

  7. Kim, O. H. et al. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat. Commun. 4, 2473 (2013).

    Article  ADS  PubMed  Google Scholar 

  8. Muth, J. T., Dixon, P. G., Woish, L., Gibson, L. J. & Lewis, J. A. Architected cellular ceramics with tailored stiffness via direct foam writing. Proc. Natl Acad. Sci. USA 114, 1832–1837 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Christensen, R. M. Mechanics of low density materials. J. Mech. Phys. Solids 34, 563–578 (1986).

    Article  ADS  Google Scholar 

  10. Coulais, C., Sabbadini, A., Vink, F. & van Hecke, M. Multi-step self-guided pathways for shape-changing metamaterials. Nature 561, 512–515 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Gan, Z., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Maloney, K. J. et al. Multifunctional heat exchangers derived from three-dimensional micro-lattice structures. Int. J. Heat Mass Transf. 55, 2486–2493 (2012).

    Article  CAS  Google Scholar 

  13. Khan, M. I. H., Farrell, T., Nagy, S. A. & Karim, M. A. Fundamental understanding of cellular water transport process in bio-food material during drying. Sci. Rep. 8, 15191 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, R., Hao, P., Zhang, X. & He, F. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells. Soft Matter 12, 5808–5817 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kim, J. J., Bong, K. W., Reátegui, E., Irimia, D. & Doyle, P. S. Porous microwells for geometry-selective, large-scale microparticle arrays. Nat. Mater. 16, 139–146 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kang, S. H., Shan, S., Noorduin, W. L., Khan, M., Aizenberg, J. & Bertoldi, K. Buckling-induced reversible symmetry breaking and amplification of chirality using supported cellular structures. Adv. Mater. 25, 3380–3385 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Boley, J. W. et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl Acad. Sci. USA 116, 20856–20862 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, H., Guo, X., Wu, J., Fang, D. & Zhang, Y. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci. Adv. 4, eaar8535 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Coulais, C., Teomy, E., De Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529–532 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Haghpanah, B., Salari-Sharif, L., Pourrajab, P., Hopkins, J. & Valdevit, L. Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915–7920 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, H. et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bico, J., Roman, B., Moulin, L. & Boudaoud, A. Elastocapillary coalescence in wet hair. Nature 432, 690 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Pokroy, B., Kang, S. H., Mahadevan, L. & Aizenberg, J. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Kang, S. H., Pokroy, B., Mahadevan, L. & Aizenberg, J. Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction. ACS Nano 4, 6323–6331 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Roman, B. & Bico, J. Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys. Condens. Matter 22, 493101 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Cai, L. H. et al. Soft poly(dimethylsiloxane) elastomers from architecture-driven entanglement free design. Adv. Mater. 27, 5132–5140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeong, S. H., Zhang, S., Hjort, K., Hilborn, J. & Wu, Z. PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater. 28, 5830–5836 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Matsunaga, M., Aizenberg, M. & Aizenberg, J. Controlling the stability and reversibility of micropillar assembly by surface chemistry. J. Am. Chem. Soc. 133, 5545–5553 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  32. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  33. Dimarzio, E. A. & Gibbs, J. H. Molecular interpretation of glass temperature depression by plasticizers. J. Polym. Sci. A 1, 1417–1428 (1963).

    CAS  Google Scholar 

  34. Lin, H. et al. Organic molecule-driven polymeric actuators. Macromol. Rapid Commun. 40, 1800896 (2019).

    Article  Google Scholar 

  35. Du, H. & Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6, 3370–3376 (2010).

    Article  ADS  CAS  Google Scholar 

  36. Gu, Y., Zhao, J. & Johnson, J. A. Polymer networks: from plastics and gels to porous frameworks. Angew. Chem. Int. Ed. 59, 5022–5049 (2020).

    Article  CAS  Google Scholar 

  37. Holmes, D. P., Brun, P. T., Pandey, A. & Protière, S. Rising beyond elastocapillarity. Soft Matter 12, 4886–4890 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wei, Z. et al. Elastocapillary coalescence of plates and pillars. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20140593 (2015).

    ADS  CAS  Google Scholar 

  39. Calvert, P. Hydrogels for soft machines. Adv. Mater. 21, 743–756 (2009).

    Article  ADS  CAS  Google Scholar 

  40. Chow, T. S. Molecular interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules 13, 362–364 (1980).

    Article  ADS  CAS  Google Scholar 

  41. Rath, A., Geethu, P. M., Mathesan, S., Satapathy, D. K. & Ghosh, P. Solvent triggered irreversible shape morphism of biopolymer films. Soft Matter 14, 1672–1680 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Zhu, X., Wu, G., Dong, R., Chen, C. M. & Yang, S. Capillarity induced instability in responsive hydrogel membranes with periodic hole array. Soft Matter 8, 8088–8093 (2012).

    Article  ADS  CAS  Google Scholar 

  43. Myshkin, N. & Kovalev, A. Adhesion and surface forces in polymer tribology—a review. Friction 6, 143–155 (2018).

    Article  Google Scholar 

  44. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  45. White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Yao, Y. et al. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proc. Natl Acad. Sci. USA 115, 12950–12955 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) through the Designing Materials to Revolutionize and Engineer our Future (DMREF) programme under award number DMR-1922321 and the Harvard University Materials Research Science and Engineering Center (MRSEC) under award number DMR-2011754 (theory and computational studies), and by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under award number DE-SC0005247 (experiment and characterization). Microfabrication and scanning electron microscopy were performed at the Center for Nanoscale Systems (CNS) at Harvard, a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the NSF under NSF ECCS award number 1541959. We thank D. Y. Kim for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.L., B.D., K.B. and J.A. conceived and initiated the project. S.L., A.S.-Y., J.K., R.S.M. and C.T.Z. performed the experiments. B.D. performed the theoretical modelling and image analysis. J.L. and S.Y. performed the finite-element modelling and pattern designs. S.L., B.D. and A.G. analysed the experimental data. K.B. and J.A. supervised the project. All co-authors provided useful feedback and contributed to the manuscript.

Corresponding author

Correspondence to Joanna Aizenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Robin Ras, Arnaud Saint-Jalmes, Scott Waitukaitis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Theoretical Model, Supplemental Results including Supplementary Figures 1 to 17, and legends for Supplementary Videos 1 to 7.

Peer Review File

Supplementary Video 1

Inducible relaxation of an isolated LCP microplate and a hexagonal lattice after trapping in the deformed state.

Supplementary Video 2

Elasto-capillary assembly of a triangular lattice into a hexagonal lattice.

Supplementary Video 3

Robustness of the transformed topology.

Supplementary Video 4

Disassembly of the hexagonal lattice back to the initial triangular topology.

Supplementary Video 5

Hierarchical transformation of a diamond lattice by first transforming to a hexagonal topology via acetone and then inducing a phase transition of an oriented LCP.

Supplementary Video 6

Elasto-capillary assembly over a larger area without and with phase design.

Supplementary Video 7

Demonstration of properties and applications made possible by topological transformation of the cellular structures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Deng, B., Grinthal, A. et al. Liquid-induced topological transformations of cellular microstructures. Nature 592, 386–391 (2021). https://doi.org/10.1038/s41586-021-03404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03404-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing