Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earthquakes indicated magma viscosity during Kīlauea’s 2018 eruption

Abstract

Magma viscosity strongly controls the style (for example, explosive versus effusive) of a volcanic eruption and thus its hazard potential, but can only be measured during or after an eruption. The identification of precursors indicative of magma viscosity would enable forecasting of the eruption style and the scale of associated hazards1. The unanticipated May 2018 rift intrusion and eruption of Kīlauea Volcano, Hawai‘i2 displayed exceptional chemical and thermal variability in erupted lavas, leading to unpredictable effusion rates and explosivity. Here, using an integrated analysis of seismicity and magma rheology, we show that the orientation of fault-plane solutions (which indicate a fault’s orientation and sense of movement) for earthquakes preceding and accompanying the 2018 eruption indicate a 90-degree local stress-field rotation from background, a phenomenon previously observed only at high-viscosity eruptions3, and never before at Kīlauea4,5,6,7,8. Experimentally obtained viscosities for 2018 products and earlier lavas from the Pu‘u ‘Ō‘ō vents tightly constrain the viscosity threshold required for local stress-field reorientation. We argue that rotated fault-plane solutions in earthquake swarms at Kīlauea and other volcanoes worldwide provide an early indication that unrest involves magma of heightened viscosity, and thus real-time monitoring of the orientations of fault-plane solutions could provide critical information about the style of an impending eruption. Furthermore, our results provide insight into the fundamental nature of coupled failure and flow in complex multiphase systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of Kīlauea Volcano, HV seismic network (inverted orange triangles), and locations/FPS showing fault orientation and sense of slip (beachball symbols) for 11 background-period earthquakes in LERZ.
Fig. 2: Map views of eruption FPS.
Fig. 3: Time−longitude plots of recorded earthquakes and FPS at Kīlauea Volcano during the study period.
Fig. 4: Bulk viscosity of Kīlauea 2018 and Pu‘u ‘Ō‘ō (PO) eruptive products.

Data availability

Continuous seismic waveform data (network codes HV (https://doi.org/10.7914/SN/HV), Z6 (https://doi.org/10.7914/SN/Z6_2018), and 4S (https://doi.org/10.7914/SN/4S_2018) are available through the IRIS Data Management Center. A catalogue of located earthquakes is available through the USGS National Earthquake Information Center (https://doi.org/10.5066/F7MS3QZH). Source data are provided with this paper.

References

  1. 1.

    Sides, I. R., Edmonds, M., Maclennan, J., Swanson, D. A. & Houghton, B. F. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition. Nat. Geosci. 7, 464–469 (2014).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367−374 (2019).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Roman, D. C. & Cashman, K. V. The origin of volcano-tectonic earthquake swarms. Geology 34, 457–460 (2006).

    ADS  Article  Google Scholar 

  4. 4.

    Karpin, T. L. & Thurber, C. H. The relationship between earthquake swarms and magma transport: Kilauea Volcano, Hawaii. Pure Appl. Geophys. 125, 971–991 (1987).

    ADS  Article  Google Scholar 

  5. 5.

    Endo, E. T. Focal Mechanisms for the May 15-18, 1970 Shallow Kilauea Earthquake Swarm. Thesis, San Jose State College (1971).

  6. 6.

    Hill, D. P. A model for earthquake swarms. J. Geophys. Res. 82, 1347–1352 (1977).

    ADS  Article  Google Scholar 

  7. 7.

    Lin, G. & Okubo, P. G. A large refined catalog of earthquake relocations and focal mechanisms for the Island of Hawai‘i and its seismotectonic implications. J. Geophys. Res. 121, 5031–5048 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Wauthier, C., Roman, D. C. & Poland, M. P. Modulation of seismic activity in Kīlauea’s upper East Rift Zone (Hawai‘i) by summit pressurization. Geology 47, 820–824 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Hildreth, W., Fierstein, J., Champion, D. & Calvert, A. Mammoth Mountain and its mafic periphery—a late Quaternary volcanic field in eastern California. Geosphere 10, 1315–1365 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Fierstein, J., Hildreth, W. & Calvert, A. T. Eruptive history of South Sister, Oregon Cascades. J. Volcanol. Geotherm. Res. 207, 145–179 (2011).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Tarasewicz, J., White, R. S., Woods, A. W., Brandsdóttir, B. & Gudmundsson, M. T. Magma mobilization by downward‐propagating decompression of the Eyjafjallajökull volcanic plumbing system. Geophys. Res. Lett. 39, L19309 (2012).

  12. 12.

    Stock, M. et al. Cryptic evolved melts beneath monotonous basaltic shield volcanoes in the Galápagos Archipelago. Nat. Commun. 11, 3767 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Ho, R. A. & Garcia, M. O. Origin of differentiated lavas at Kilauea Volcano, Hawaii: implications from the 1955 eruption. Bull. Volcanol. 50, 35–46 (1988).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Gansecki, C. et al. The tangled tale of Kīlauea’s 2018 eruption as told by geochemical monitoring. Science 366, eaaz0147 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Griffiths, R. W. The dynamics of lava flows. Annu. Rev. Fluid Mech. 32, 477–518 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Cassidy, M., Manga, M., Cashman, K. V. & Bachmann, O. Controls on explosive-effusive volcanic eruption styles. Nat. Commun. 9, 2839 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Macdonald, G. A. & Eaton, J. P. Hawaiian Volcanoes During 1955. USGS Bulletin 1171 https://doi.org/10.3133/b1171 (United States Geological Survey, 1964).

  18. 18.

    Roman, D. C. & Gardine, M. D. Seismological evidence for long-term and rapidly accelerating magma pressurization preceding the 2009 eruption of Redoubt Volcano, Alaska. Earth Planet. Sci. Lett. 371/372, 226–234 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Lehto, H. L., Roman, D. C. & Moran, S. C. Temporal changes in stress preceding the 2004–2008 eruption of Mount St. Helens, Washington. J. Volcanol. Geotherm. Res. 198, 129–142 (2010).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Roman, D. C. Numerical models of volcanotectonic earthquake triggering on non‐ideally oriented faults. Geophys. Res. Lett. 32, L02304 (2005).

  21. 21.

    Smith, J. V. Shear thickening dilatancy in crystal-rich flows. J. Volcanol. Geotherm. Res. 79, 1–8 (1997).

    ADS  Article  Google Scholar 

  22. 22.

    Roman, D. C. & Heron, P. Effect of regional tectonic setting on local fault response to episodes of volcanic activity. Geophys. Res. Lett. 34, L13310 (2007).

  23. 23.

    Wright, T. L. & Klein, F. W. Two Hundred Years of Magma Transport and Storage at Kīlauea Volcano, Hawai‘i, 1790–2008. USGS Professional Paper 1806 https://doi.org/10.3133/pp1806 (United States Geological Survey, 2014).

  24. 24.

    Johnson, J. H., Swanson, D. A., Roman, D. C., Poland, M. P. & Thelen, W. A. Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy. In Hawaiian Volcanoes: From Source to Surface (eds. Carey, R., Cayol, V., Poland, M. & Weis, D.) 251−268 (Wiley, 2015).

  25. 25.

    Chen, K. et al. Triggering of the MW 7.2 Hawaii earthquake of 4 May 2018 by a dike intrusion. Geophys. Res. Lett. 46, 2503–2510 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Moore, R. B. Distribution of differentiated tholeiitic basalts on the lower east rift zone of Kilauea Volcano, Hawaii: a possible guide to geothermal exploration. Geology 11, 136–140 (1983).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Lin, G., Shearer, P. M., Matoza, R. S., Okubo, P. G. & Amelung, F. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography. J. Geophys. Res. 119, 4377–4392 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Teplow, W. et al. Dacite melt at the Puna geothermal venture wellfield, Big Island of Hawaii. Trans. Geotherm. Resour. Council 33, 989–994 (2009).

    CAS  Google Scholar 

  29. 29.

    Olivier, G., Brenguier, F., Carey, R., Okubo, P. & Donaldson, C. Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea Volcano with ambient seismic noise interferometry. Geophys. Res. Lett. 46, 3734–3744 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Patrick, M. R. et al. The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nat. Commun. 11, 5646 (2020).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Wicks, C. W., Thatcher, W., Dzurisin, D. & Svarc, J. Uplift, thermal unrest and magma intrusion at Yellowstone caldera. Nature 440, 72–75 (2006).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Castro, J. M. & Dingwell, D. B. Rapid ascent of rhyolitic magma at Chaiten volcano, Chile. Nature 461, 780–783 (2009).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Hawaiian Volcano Observatory Network https://doi.org/10.7914/SN/HV (USGS Hawaiian Volcano Observatory, International Federation of Digital Seismograph Networks, 1956).

  34. 34.

    Wei, X., Shen, Y., Caplan‐Auerbach, J. & Morgan, J. K. An OBS array to investigate offshore seismicity during the 2018 Kīlauea eruption. Seismol. Res. Lett. 92, 603–612 (2021).

    Article  Google Scholar 

  35. 35.

    Johnson, J. UEA STAK Project https://doi.org/10.7914/SN/4S_2018 (National Geoscience Data Centre, International Federation of Digital Seismograph Networks, 2018).

  36. 36.

    Lienert, B. R. & Havskov, J. A computer program for locating earthquakes both locally and globally. Seismol. Res. Lett. 66, 26–36 (1995).

    Article  Google Scholar 

  37. 37.

    Klein, F. W. A linear gradient crustal model for south Hawaii. Bull. Seismol. Soc. Am. 71, 1503–1510 (1981).

    Google Scholar 

  38. 38.

    Reasenberg, P. & Oppenheimer, D. FPFIT, FPPLOT and FPPAGE: FORTRAN Computer Programs for Calculating and Displaying Earthquake Fault Plane Solutions. Open-File Report 85-739 https://doi.org/10.3133/ofr85739 (USGS, 1985).

  39. 39.

    Lin, J. & Stein, R. S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults. J. Geophys. Res. 109, B02303 (2004).

  40. 40.

    Toda, S., Stein, R. S., Richards‐Dinger, K. & Bozkurt, S. B. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J. Geophys. Res. 110, B05S16 (2005).

  41. 41.

    Giordano, D., Russell, J. K. & Dingwell, D. B. Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134 (2008).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Dingwell, D. B. & Virgo, D. The effect of oxidation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2. Geochim. Cosmochim. Acta 51, 195–205 (1987).

    ADS  CAS  Article  Google Scholar 

  43. 43.

    Mader, H. M., Llewellin, E. W. & Mueller, S. P. The rheology of two-phase magmas: a review and analysis. J. Volcanol. Geotherm. Res. 257, 135–158 (2013).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Phan-Thien, N. & Pham, D. C. Differential multiphase models for polydispersed suspensions and particulate solids. J. Non-Newt. Fluid Mech. 72, 305–318 (1997).

    CAS  Article  Google Scholar 

  45. 45.

    Chevrel, M. O. et al. The viscosity of pāhoehoe lava: in situ syn-eruptive measurements from Kilauea, Hawaii. Earth Planet. Sci. Lett. 493, 161–171 (2018).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Dietterich, F. Pollitz, and F. Sigmundsson for constructive comments that improved the quality of this manuscript. A.S. acknowledges the support of the Alexander von Humboldt Postdoctoral Fellowship. D.B.D. was supported by ERC 2018 ADV Grant 834225 (EAVESDROP). B.F.H. acknowledges funding by NSF EAR 1829188 and USGS Disaster Supplemental Research funding.

Author information

Affiliations

Authors

Contributions

D.C.R. and B.R.S. calculated earthquake locations and FPS. D.C.R. conducted Coulomb stress modelling. A.S. and D.B.D. conducted viscosity experiments and modelling. B.F.H. conducted sample collection. D.C.R. led the interpretation and writing of the manuscript, and all co-authors contributed to the interpretation and writing of the manuscript.

Corresponding author

Correspondence to D. C. Roman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Fred Pollitz and Freysteinn Sigmundsson for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Experimentally determined and modelled viscosities for Kīlauea 2018 and Pu‘u ‘Ō‘ō samples

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roman, D.C., Soldati, A., Dingwell, D.B. et al. Earthquakes indicated magma viscosity during Kīlauea’s 2018 eruption. Nature 592, 237–241 (2021). https://doi.org/10.1038/s41586-021-03400-x

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing