Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection


Recent multi-dimensional simulations suggest that high-entropy buoyant plumes help massive stars to explode1,2. Outwardly protruding iron (Fe)-rich fingers of gas in the galactic supernova remnant3,4 Cassiopeia A seem to match this picture. Detecting the signatures of specific elements synthesized in the high-entropy nuclear burning regime (that is, α-rich freeze out) would constitute strong substantiating evidence. Here we report observations of such elements—stable titanium (Ti) and chromium (Cr)—at a confidence level greater than 5 standard deviations in the shocked high-velocity Fe-rich ejecta of Cassiopeia A. We found that the observed Ti/Fe and Cr/Fe mass ratios require α-rich freeze out, providing evidence of the existence of the high-entropy ejecta plumes that boosted the shock wave at explosion. The metal composition of the plumes agrees well with predictions for strongly neutrino-processed proton-rich ejecta2,5,6. These results support the operation of the convective supernova engine via neutrino heating in the supernova that produced Cassiopeia A.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Asymmetric distribution of elements in Cassiopeia A supernova remnant.
Fig. 2: The X-ray spectrum of the southeastern Fe-rich ejecta.
Fig. 3: Comparisons of the observed mass ratios with those by theoretical calculations.

Data availability

All the Chandra and NuSTAR data used in this research are available from the Chandra Data Archive ( and the NuSTAR Archive ( in raw and reduced formats.

Code availability

To analyse X-ray data with Chandra, we used public software, Chandra Interactive Analysis of Observations: CIAO ( We used public atomic data in atomDB ( and SPEX ( We fitted the X-ray spectra with a public package, Xspec ( We have not made publicly available codes for the hydrodynamics and nucleosynthesis of supernova explosions because they are not prepared for open use. Instead, the simulated thermodynamic profiles of the supernova explosions and the composition distributions shown in this paper are available on request.


  1. 1.

    Janka, H.-T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016).

    ADS  CAS  Google Scholar 

  2. 2.

    Burrows, A. et al. The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. Mon. Not. R. Astron. Soc. 491, 2715–2735 (2020).

    ADS  CAS  Google Scholar 

  3. 3.

    Hughes, J. P., Rakowski, C. E., Burrows, D. N. & Slane, P. O. Nucleosynthesis and mixing in Cassiopeia A. Astrophys. J. Lett. 528, L109–L113 (2000).

    ADS  CAS  Google Scholar 

  4. 4.

    Hwang, U. & Laming, J. M. Where was the iron synthesized in Cassiopeia A? Astrophys. J. 597, 362–373 (2003).

    ADS  CAS  Google Scholar 

  5. 5.

    Buras, R., Rampp, M., Janka, H. T. & Kifonidis, K. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M star. Astron. Astrophys. 447, 1049–1092 (2006).

    ADS  CAS  Google Scholar 

  6. 6.

    Wanajo, S., Müller, B., Janka, H.-T. & Heger, A. Nucleosynthesis in the innermost ejecta of neutrino-driven supernova explosions in two dimensions. Astrophys. J. 852, 40 (2018).

    ADS  Google Scholar 

  7. 7.

    Bethe, H. A. & Wilson, J. R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985).

    ADS  CAS  Google Scholar 

  8. 8.

    Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830 (1995).

    ADS  CAS  Google Scholar 

  9. 9.

    Janka, H.-T. et al. Core-collapse supernovae: reflections and directions. Prog. Theor. Exp. Phys. 2012, 01A309 (2012).

    Google Scholar 

  10. 10.

    Kifonidis, K., Plewa, T., Janka, H. T. & Müller, E. Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps. Astron. Astrophys. 408, 621–649 (2003).

    ADS  CAS  Google Scholar 

  11. 11.

    Hammer, N. J., Janka, H. T. & Müller, E. Three-dimensional simulations of mixing instabilities in supernova explosions. Astrophys. J. 714, 1371–1385 (2010).

    ADS  CAS  Google Scholar 

  12. 12.

    Wongwathanarat, A., Janka, H.-T., Müller, E., Pllumbi, E. & Wanajo, S. Production and distribution of 44Ti and 56Ni in a three-dimensional supernova model resembling Cassiopeia A. Astrophys. J. 842, 13 (2017).

    ADS  Google Scholar 

  13. 13.

    Nagataki, S., Hashimoto, M.-a., Sato, K., Yamada, S. & Mochizuki, Y. S. The high ratio of 44Ti/56Ni in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys. J. Lett. 492, L45–L48 (1998).

    ADS  CAS  Google Scholar 

  14. 14.

    Iyudin, A. F. et al. COMPTEL observations of 44Ti gamma-ray line emission form CAS A. Astron. Astrophys. 284, L1–L4 (1994).

    ADS  CAS  Google Scholar 

  15. 15.

    Grefenstette, B. W. et al. Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in CassiopeiaA. Nature 506, 339–342 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Grefenstette, B. W. et al. The distribution of radioactive 44Ti in Cassiopeia A. Astrophys. J. 834, 19 (2017).

    ADS  Google Scholar 

  17. 17.

    Nakamura, T. et al. Explosive nucleosynthesis in hypernovae. Astrophys. J. 555, 880–899 (2001).

    ADS  CAS  Google Scholar 

  18. 18.

    Woosley, S. E., Arnett, W. D. & Clayton, D. D. The explosive burning of oxygen and silicon. Astrophys. J. Suppl. 26, 231 (1973).

    ADS  CAS  Google Scholar 

  19. 19.

    Vance, G. S., Young, P. A., Fryer, C. L. & Ellinger, C. I. Titanium and iron in the Cassiopeia A supernova remnant. Astrophys. J. 895, 82 (2020).

    ADS  CAS  Google Scholar 

  20. 20.

    Milisavljevic, D. & Fesen, R. A. A detailed kinematic map of Cassiopeia A’s optical main shell and outer high-velocity ejecta. Astrophys. J. 772, 134 (2013).

    ADS  Google Scholar 

  21. 21.

    Milisavljevic, D. & Fesen, R. A. The bubble-like interior of the core-collapse supernova remnant Cassiopeia A. Science 347, 526–530 (2015).

    ADS  CAS  Google Scholar 

  22. 22.

    Orlando, S. et al. The fully developed remnant of a neutrino-driven supernova. Evolution of ejecta structure and asymmetries in SNR Cassiopeia A. Astron. Astrophys. 645, A66 (2021).

    CAS  Google Scholar 

  23. 23.

    Willingale, R., Bleeker, J. A. M., van der Heyden, K. J., Kaastra, J. S. & Vink, J. X-ray spectral imaging and Doppler mapping of Cassiopeia A. Astron. Astrophys. 381, 1039–1048 (2002).

    ADS  CAS  Google Scholar 

  24. 24.

    DeLaney, T. et al. The three-dimensional structure of Cassiopeia A. Astrophys. J. 725, 2038–2058 (2010).

    ADS  CAS  Google Scholar 

  25. 25.

    Hitomi Collaboration. Solar abundance ratios of the iron-peak elements in the Perseus cluster. Nature 551, 478–480 (2017).

    ADS  Google Scholar 

  26. 26.

    Tashiro, M. et al. Status of X-ray imaging and spectroscopy mission (XRISM). In Proc. SPIE Conf. Ser. Vol. 11444, 1144422, (Society of Photo-Optical Instrumentation Engineers, 2020).

  27. 27.

    Barret, D. et al. The ATHENA X-ray Integral Field Unit (X-IFU). In Proc. SPIE Conf. Ser. Vol. 10699, 106991G, (Society of Photo-Optical Instrumentation Engineers, 2018).

  28. 28.

    Gotthelf, E. V. et al. Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. Lett. 552, L39–L43 (2001).

    ADS  Google Scholar 

  29. 29.

    Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    ADS  CAS  Google Scholar 

  30. 30.

    Sato, T. et al. A subsolar metallicity progenitor for Cassiopeia A, the remnant of a type IIb supernova. Astrophys. J. 893, 49 (2020).

    ADS  CAS  Google Scholar 

  31. 31.

    Fesen, R. A. An optical survey of outlying ejecta in Cassiopeia A: evidence for a turbulent, asymmetric explosion. Astrophys. J. Suppl. 133, 161–186 (2001).

    ADS  CAS  Google Scholar 

  32. 32.

    Fesen, R. A. et al. The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys. J. 645, 283–292 (2006).

    ADS  Google Scholar 

  33. 33.

    Fesen, R. A. & Milisavljevic, D. An HST survey of the highest-velocity ejecta in Cassiopeia A. Astrophys. J. 818, 17 (2016).

    ADS  Google Scholar 

  34. 34.

    Thorstensen, J. R., Fesen, R. A. & van den Bergh, S. The expansion center and dynamical age of the galactic supernova remnant Cassiopeia A. Astron. J. 122, 297–307 (2001).

    ADS  Google Scholar 

  35. 35.

    Wheeler, J. C., Maund, J. R. & Couch, S. M. The shape of Cas A. Astrophys. J. 677, 1091–1099 (2008).

    ADS  CAS  Google Scholar 

  36. 36.

    Vink, J. et al. Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44Ti in Cassiopeia A. Astrophys. J. Lett. 560, L79–L82 (2001).

    ADS  CAS  Google Scholar 

  37. 37.

    Renaud, M. et al. The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys. J. Lett. 647, L41–L44 (2006).

    ADS  CAS  Google Scholar 

  38. 38.

    Bollig, R. et al. Self-consistent 3D supernova models from -7 minutes to +7 seconds: a 1-bethe explosion of a 19 solar-mass progenitor. Preprint at (2020).

  39. 39.

    Hwang, U., Holt, S. S. & Petre, R. Mapping the X-ray-emitting ejecta in Cassiopeia A with Chandra. Astrophys. J. Lett. 537, L119–L122 (2000).

    ADS  CAS  Google Scholar 

  40. 40.

    Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. Lett. 615, L117–L120 (2004).

    ADS  CAS  Google Scholar 

  41. 41.

    Herant, M., Benz, W., Hix, W. R., Fryer, C. L. & Colgate, S. A. Inside the supernova: a powerful convective engine. Astrophys. J. 435, 339 (1994).

    ADS  CAS  Google Scholar 

  42. 42.

    Janka, H. T., Langanke, K., Marek, A., Martínez-Pinedo, G. & Müller, B. Theory of core-collapse supernovae. Phys. Rep. 442, 38–74 (2007).

    ADS  CAS  Google Scholar 

  43. 43.

    Burrows, A. & Vartanyan, D. Core-collapse supernova explosion theory. Nature 589, 29–39 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Maeda, K. & Nomoto, K. Bipolar supernova explosions: nucleosynthesis and implications for abundances in extremely metal-poor stars. Astrophys. J. 598, 1163–1200 (2003).

    ADS  CAS  Google Scholar 

  45. 45.

    Orlando, S., Miceli, M., Pumo, M. L. & Bocchino, F. Modeling SNR Cassiopeia A from the supernova explosion to its current age: the role of post-explosion anisotropies of ejecta. Astrophys. J. 822, 22 (2016).

    ADS  Google Scholar 

  46. 46.

    Reed, J. E., Hester, J. J., Fabian, A. C. & Winkler, P. F. The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706 (1995).

    ADS  Google Scholar 

  47. 47.

    Lawrence, S. S. et al. Three-dimensional Fabry-Perot imaging spectroscopy of the Crab nebula, Cassiopeia A, and Nova GK Persei. Astron. J. 109, 2635 (1995).

    ADS  CAS  Google Scholar 

  48. 48.

    Alarie, A., Bilodeau, A. & Drissen, L. A hyperspectral view of Cassiopeia A. Mon. Not. R. Astron. Soc. 441, 2996–3008 (2014).

    ADS  CAS  Google Scholar 

  49. 49.

    Arnett, D., Fryxell, B. & Mueller, E. Instabilities and nonradial motion in SN 1987A. Astrophys. J. Lett. 341, L63 (1989).

    ADS  CAS  Google Scholar 

  50. 50.

    Li, H., McCray, R. & Sunyaev, R. A. Iron, cobalt, and nickel in SN 1987A. Astrophys. J. 419, 824 (1993).

    ADS  CAS  Google Scholar 

  51. 51.

    Blondin, J. M., Borkowski, K. J. & Reynolds, S. P. Dynamics of Fe bubbles in young supernova remnants. Astrophys. J. 557, 782–791 (2001).

    ADS  CAS  Google Scholar 

  52. 52.

    Ono, M. et al. Matter mixing in aspherical core-collapse supernovae: a search for possible conditions for conveying 56Ni into high velocity regions. Astrophys. J. 773, 161 (2013).

    ADS  Google Scholar 

  53. 53.

    Fryxell, B., Mueller, E. & Arnett, D. Instabilities and clumping in SN 1987A. I. Early evolution in two dimensions. Astrophys. J. 367, 619 (1991).

    ADS  CAS  Google Scholar 

  54. 54.

    Hachisu, I., Matsuda, T., Nomoto, K. & Shigeyama, T. Nonlinear growth of Rayleigh-Taylor instabilities and mixing in SN 1987A. Astrophys. J. Lett. 358, L57 (1990).

    ADS  CAS  Google Scholar 

  55. 55.

    Mueller, E., Fryxell, B. & Arnett, D. Instability and clumping in SN 1987A. Astron. Astrophys. 251, 505 (1991).

    ADS  Google Scholar 

  56. 56.

    Herant, M. & Benz, W. Hydrodynamical instabilities and mixing in SN 1987A: two-dimensional simulations of the first 3 months. Astrophys. J. Lett. 370, L81 (1991).

    ADS  CAS  Google Scholar 

  57. 57.

    Gabler, M., Wongwathanarat, A. & Janka, H.-T. The infancy of core-collapse supernova remnants. Mon. Not. R. Astron. Soc. 502, 3264–3293 (2021).

    ADS  Google Scholar 

  58. 58.

    Patnaude, D. J., Vink, J., Laming, J. M. & Fesen, R. A. A decline in the nonthermal X-ray emission from Cassiopeia A. Astrophys. J. Lett. 729, L28 (2011).

    ADS  Google Scholar 

  59. 59.

    Patnaude, D. J. & Fesen, R. A. A comparison of X-ray and optical emission in Cassiopeia A. Astrophys. J. 789, 138 (2014).

    ADS  Google Scholar 

  60. 60.

    Sato, T. et al. Multi-year X-ray variations of iron-K and continuum emissions in the young supernova remnant Cassiopeia A. Astrophys. J. 836, 225 (2017).

    ADS  Google Scholar 

  61. 61.

    Sato, T. et al. X-ray measurements of the particle acceleration properties at inward shocks in Cassiopeia A. Astrophys. J. 853, 46 (2018).

    ADS  Google Scholar 

  62. 62.

    Fruscione, A. et al. CIAO: Chandra’s data analysis system. In Proc. SPIE Conf. Ser. Vol. 6270 (eds Silva, D. R. & Doxsey, R. E.) 62701V, (Society of Photo-Optical Instrumentation Engineers, 2006).

  63. 63.

    Hwang, U. & Laming, J. M. A Chandra X-ray survey of ejecta in the Cassiopeia A supernova remnant. Astrophys. J. 746, 130 (2012).

    ADS  Google Scholar 

  64. 64.

    Takahashi, K., Yoshida, T., Umeda, H., Sumiyoshi, K. & Yamada, S. Exact and approximate expressions of energy generation rates and their impact on the explosion properties of pair instability supernovae. Mon. Not. R. Astron. Soc. 456, 1320–1331 (2016).

    ADS  CAS  Google Scholar 

  65. 65.

    Takahashi, K., Yoshida, T. & Umeda, H. Stellar yields of rotating first stars. II. Pair-instability supernovae and comparison with observations. Astrophys. J. 857, 111 (2018).

    ADS  Google Scholar 

  66. 66.

    Takahashi, K., Sumiyoshi, K., Yamada, S., Umeda, H. & Yoshida, T. The evolution toward electron capture supernovae: the flame propagation and the pre-bounce electron-neutrino radiation. Astrophys. J. 871, 153 (2019).

    ADS  CAS  Google Scholar 

  67. 67.

    Yoshida, T. et al. One-, two-, and three-dimensional simulations of oxygen-shell burning just before the core collapse of massive stars. Astrophys. J. 881, 16 (2019).

    ADS  CAS  Google Scholar 

  68. 68.

    Georgy, C. et al. Grids of stellar models with rotation. III. Models from 0.8 to 120 M at a metallicity Z = 0.002. Astron. Astrophys. 558, A103 (2013).

    Google Scholar 

  69. 69.

    Colella, P. & Woodward, P. R. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984).

    ADS  MATH  Google Scholar 

  70. 70.

    Umeda, H. & Nomoto, K. Variations in the abundance pattern of extremely metal-poor stars and nucleosynthesis in population III supernovae. Astrophys. J. 619, 427–445 (2005).

    ADS  CAS  Google Scholar 

  71. 71.

    Magkotsios, G. et al. Trends in 44Ti and 56Ni from core-collapse supernovae. Astrophys. J. Suppl. 191, 66–95 (2010).

    ADS  CAS  Google Scholar 

  72. 72.

    Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A. & Dolence, J. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M. Mon. Not. R. Astron. Soc. 477, 3091–3108 (2018).

    ADS  CAS  Google Scholar 

  73. 73.

    Hitomi Collaboration. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi. Publ. Astron. Soc. Jpn 70, 12 (2018).

    ADS  Google Scholar 

  74. 74.

    Woosley, S. E., Hartmann, D. H., Hoffman, R. D. & Haxton, W. C. The nu -process. Astrophys. J. 356, 272 (1990).

    ADS  CAS  Google Scholar 

  75. 75.

    Yoshida, T., Umeda, H. & Nomoto, K. ν-Process nucleosynthesis in population III core-collapse supernovae. Astrophys. J. 672, 1043–1053 (2008).

    ADS  CAS  Google Scholar 

  76. 76.

    Lattimer, J. M. & Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 550, 426–442 (2001).

    ADS  Google Scholar 

  77. 77.

    Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N. & Ohkubo, T. Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006).

    ADS  CAS  Google Scholar 

  78. 78.

    Nagataki, S. Influence of axisymmetrically deformed explosions in type II supernovae on the reproduction of the Solar System abundances. Astrophys. J. 511, 341–350 (1999).

    ADS  CAS  Google Scholar 

  79. 79.

    Foster, A. R., Ji, L., Smith, R. K. & Brickhouse, N. S. Updated atomic data and calculations for X-ray spectroscopy. Astrophys. J. 756, 128 (2012).

    ADS  Google Scholar 

  80. 80.

    Kaastra, J. S., Mewe, R. & Nieuwenhuijzen, H. SPEX: a new code for spectral analysis of X & UV spectra. In UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas 411–414 (Universal Academy Press, 1996).

Download references


T.S. was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number JP19K14739, the Special Postdoctoral Researchers Program, and FY 2019 Incentive Research Projects in RIKEN. K.M. was supported in part by Grants-in-Aid for the Scientific Research of JSPS (grant numbers JP18H05223 and JP20H00174). S.N. is partially supported by the Grants-in-Aid for the Scientific Research of JSPS (grant KAKENHI (A) 19H00693), the RIKEN programme for Evolution of Matter in the Universe (r-EMU), and the Theoretical and Mathematical Sciences Program of RIKEN (iTHEMS). J.PH. acknowledges support for X-ray studies of supernova remnants from NASA grant NNX15AK71G to Rutgers University. T.Y. is supported in part by a Grant-in-Aid for Scientific Research of Innovative Areas (JP20H05249). H.U. is supported in part by a Grant-in-Aid for Scientific Research (JP17H01130).

Author information




T.S. wrote the manuscript with comments from all the authors and analysed the Chandra data. K.M., S.N., H.U., J.P.H. and B.J.W. made important contributions to the overall science case and manuscript. B.G. analysed the NuSTAR data and made Fig. 1. T.Y., H.U. and M.O. calculated the nucleosynthesis models.

Corresponding author

Correspondence to Toshiki Sato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Patrick Young and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 X-ray analysis for the southeastern Fe-rich region.

a, The Fe-K/Si-K ratio map in 2004. The solid white contour shows the region used for the result discussed in the main text. b, The Fe−K image in 2000 (left), 2009 (middle) and 2018 (right). In order to track the proper motions of each structure, we shift the region from epoch to epoch. c, The X-ray spectrum and its best-fit model for the southeastern Fe-rich region. The spectrum (black data) taken is the same as in Fig. 2, but the best-fit thermal model has the Ti and Cr emissions. The residuals around 4.7–4.8 keV and 5.5–5.9 keV in Fig. 2 are well explained by the Ti and Cr emissions. d, The best-fit parameters for the Fe-rich ejecta. The errors show 1σ confidence level (Δχ2 = 1.0). The solar abundance in ref. 29 is used. e, The summary of the Ti measurements in the Fe-rich regions of Cassiopeia A. The errors show 1σ confidence level (Δχ2 = 1.0). d.o.f., degrees of freedom; nH, column density. n is density of plasma, t is ionization time and V is the volume of hot plasma.

Extended Data Fig. 2 X-ray spectral modelling around the Ti line.

a, The red and black show a plasma model (vvpshock) with Ti and without Ti, respectively. The Heα emissions from Ti (red) are between Ca Heβ and Ca Heγ. The grey area shows the 90% error range of the centroid energy of the Ti line observed by Chandra. The plasma parameters are the same as in Extended Data Fig. 1e (without the line broadening). b, Comparison of 4–5 keV model spectra (vvnei) that have different ionization states. The grey area shows the 90% error range of the centroid energy of the Ti line by Chandra. The most prominent lines are the Ca Heβ and Ca Heγ lines at 4.584 keV and 4.822 keV, respectively. These two Ca lines become stronger at high ionization states (>5 × 1010 cm−3 s). Ly, Lyman. DR, dielectronic recombination. c, The black data and red curves show the observed spectra and the best-fit models, respectively. The fitting range (grey area) is 3.7–7.1 keV. This result is used in the main text. d, The fitting range is 3.7–9.5 keV where the emissions up to Ni are included. To express the lack of emissions around 8.3 keV, one Gaussian line is added. e, The fitting range is 2.2–9.5 keV. Here, we added a thermal bremsstrahlung model to express a low temperature component. The best-fit parameters are summarized in the table in f. f, The best-fit parameters for the Fe-rich ejecta in the spectrum shown in e. The errors show 1σ confidence level (Δχ2 = 1.0). The solar abundance in ref. 29 is used. Some other lighter elements that are not shown here are also included in the model. D is the distance to the source and k is the Boltzmann constant.

Extended Data Fig. 3 The Fe distribution (image) and the 44Ti upper limit map (coloured boxes) around the southeastern region.

We use the 44Ti upper limits estimated in ref. 16. The box size is 45″ × 45″. The box IDs are the same as those in the paper. The white contour regions are the same as in Fig. 1. Almost all of the areas from which we extracted spectra are included in three boxed regions: 31, 39 and 47. M44 is the mass of 44Ti.

Extended Data Fig. 4 The one-dimensional core-collapse supernova nucleosynthesis model used in this study.

The model assumed a high-energy explosion of 3 × 1051 erg for a 15M progenitor. The α-rich freeze out produces some α elements (for example, Fe, Ni, Cr, Ti, Zn) at the deepest layer with high peak temperatures (>5.5 GK). At the QSE (that is, incomplete Si burning) layer, the intermediate-mass elements (such as Si, S, Ar, Ca, Cr, Mn) are abundant. Mr is the Lagrangian mass coordinate.

Extended Data Fig. 5 Nucleosynthesis calculations in the peak temperature−density plane.

a, Ti/Fe (top row) and Cr/Fe (bottom row) mass ratios in the peak temperature−density plane. From left to right, the lepton fraction corresponds to Ye = 0.499, 0.5 and 0.55. Here, we used the thermodynamic trajectories taken from our one-dimensional supernova model. All the stable isotopes are included. The production of Ti and Cr is sensitive to the high-entropy environment (toward the bottom right), which is the same as radioactive 44Ti (ref. 71). The dashed lines show the boundary between incomplete and complete Si burning. The black boxes show typical parameter spaces for the complete Si burning (α-rich freeze out) in our one-dimensional supernova model and the three-dimensional supernova model in ref. 19. In the proton-rich environment, α- and p-rich (αp-rich) freezeout occurs (ref. 71). b, Mass fractions of Ti, Cr and Ni isotopes in the nucleosynthesis calculations. n-rich, neutron-rich; p-rich, proton-rich.

Extended Data Fig. 6 The observed Ti/Fe and Cr/Fe mass ratios and nucleosynthesis models.

The pink-shaded areas show the observed mass ratios. a, The coloured points show parameter studies for hot (Tpeak = 10 GK) and proton-rich environment while changing the peak density from 105.5 g cm−3 to 107.5 g cm−3. The circle, star and square symbols show Ye = 0.53, 0.55 and 0.58, respectively. Here, we used the thermodynamic trajectories taken from our one-dimensional supernova model. b, Parameter studies with power-law thermodynamic evolusion. The star and square symbol data show the Ti/Fe and Cr/Fe mass ratios produced by Tpeak = 8 GK and Tpeak = 10 GK, respectively. To reproduce the observed mass ratios, a higher radiation entropy is needed than that in the model with the thermodynamic trajectories taken from the one-dimensional supernova model.

Extended Data Fig. 7 The observed Ti/Fe and Mn/Fe mass ratios and nucleosynthesis models.

The Mn/Fe mass ratio is derived from the best-fit model in the left column of Extended Data Fig. 1d. The shaded areas show the observed mass ratios with 90% and 99% error range. The coloured circles show the mass ratios in our one-dimensional supernova model (a 15 M progenitor, Eexp = 3 × 1051 erg, Z = 0.5Z). For the square data symbols, the same one-dimensional supernova model was used, but the lepton fraction at the α-rich freeze out is modified to Ye = 0.5. The modification from circle to square symbols (increase of Ye) suppresses the synthesized amount of neutron-rich elements like Mn. The coloured stars show a parameter study for hot (Tpeak = 10 GK) and proton-rich (Ye = 0.55) environment while changing the peak density from 105.5 g cm−3 to 107.5 g cm−3. SN, supernova.

Extended Data Fig. 8 Comparison between the Fe-rich and Si-rich regions.

a, Two-colour image around the southeastern Fe-rich region. The red and green show the Fe and Si images, respectively. The green box is defined as the Si-rich ejecta region. b, The X-ray spectrum extracted from the Si-rich region. The blue curve (Si-rich component) shows the best-fit thermal model. c, The X-ray spectrum at the Fe-rich region. The Si-rich component has the same plasma parameters as in the model of b. The red model shows the Fe-rich component that has emissions from H, He, Ti, Cr, Mn, Fe and Ni. d, Comparisons of the observed Ca/Si and Fe/Si mass ratios in the Si-rich ejecta region with those by theoretical calculations. The faint orange shading shows the observed mass ratios (99% confidence level, Δχ2 = 6.64). The coloured points show the mass ratios of the nucleosynthesis calculations in Fig. 3. e, The best-fit parameters for the Si-rich ejecta in the spectrum of b. The spectrum is extracted from the 2004 data. The errors show 1σ confidence level (Δχ2 = 1.0). The solar abundance in ref. 29 is used.

Extended Data Fig. 9 Comparisons of the observed Ni/Fe and Cr/Fe mass ratios in the Fe-rich ejecta region with those by theoretical calculations.

a, The blue and red dashed lines show the best-fit Ni/Fe mass ratios with Xspec (AtomDB79, version 3.0.9) and SPEX80 (version 3.0.5), respectively. The best-fit Ni/Fe mass ratios are different from each other because the emissivities of the Fe Kβ,γ,δ, … emissions are different depending on the atomic code. The faint orange shading indicates the observed Cr/Fe mass ratios in Fig. 3. The coloured points show the mass ratios of the nucleosynthesis calculations in Fig. 3. b, The Ni/Fe dependence on the lepton (electron) fraction, Ye. The blue and red dashed lines show the best-fit Ni/Fe mass ratios with Xspec and SPEX, respectively. Here, we assumed an explosion energy of 3 × 1051 erg, and a region with the peak temperature of Tpeak = 6.5 GK is analysed. On the neutron-rich side, the Ni/Fe ratio changes more dramatically because the neutron-rich element, 58Ni, is efficiently synthesized. On the other hand, on the proton-rich side, the Ni is not as sensitive to the lepton fraction. Here, 60Ni is dominantly synthesized (see Extended Data Fig. 5b).

Extended Data Fig. 10 Comparison of three Fe-rich regions in Cassiopeia A.

a, three-colour image of Cassiopeia A. The red, green and blue colours show the Fe−K, Si−K and the continuum (approximately non-thermal) emissions, respectively. b, X-ray spectra in the southeast (red), north (black) and southwest (green) regions. c, Comparison of spectra between XRISM and Chandra. We assumed an energy resolution of 7 eV (FWHM) and exposure time of 1 Ms for the XRISM simulation. In the simulated XRISM spectrum, we do not consider the line broadening effects (either thermal and Doppler). d, Zoom of area around the Ti emissions in c. Here we simulated a spectrum with the thermal broadening assuming kTion = 125 keV (data with error bars). The black and red lines show the thermal models with kTion = 125 keV and kTion = 780 keV, respectively.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Maeda, K., Nagataki, S. et al. High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection. Nature 592, 537–540 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing