Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere


The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades1,2. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiation conditions3. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour4 and carbon monoxide5 in their atmospheres; this has been studied in terms of scaled solar composition6 under the usual assumption of chemical equilibrium. Both molecules as well as hydrogen cyanide were found in the atmosphere of HD 209458b5,7,8, a well studied hot Jupiter (with equilibrium temperature around 1,500 kelvin), whereas ammonia was tentatively detected there9 and subsequently refuted10. Here we report observations of HD 209458b that indicate the presence of water (H2O), carbon monoxide (CO), hydrogen cyanide (HCN), methane (CH4), ammonia (NH3) and acetylene (C2H2), with statistical significance of 5.3 to 9.9 standard deviations per molecule. Atmospheric models in radiative and chemical equilibrium that account for the detected species indicate a carbon-rich chemistry with a carbon-to-oxygen ratio close to or greater than 1, higher than the solar value (0.55). According to existing models relating the atmospheric chemistry to planet formation and migration scenarios3,11,12, this would suggest that HD 209458b formed far from its present location and subsequently migrated inwards11,13. Other hot Jupiters may also show a richer chemistry than has been previously found, which would bring into question the frequently made assumption that they have solar-like and oxygen-rich compositions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Detection significance for H2O, CH4, NH3, C2H2, HCN, CO and CO2.
Fig. 2: Constraints on the chemical composition of the atmosphere of HD 209458b.
Fig. 3: Single-molecule constraints on the chemical composition of the atmosphere of HD 209458b.

Data availability

The raw data that support the findings of this study are publicly available at the Telescopio Nazionale Galileo archive hosted at the IA2 Data Center

Code availability

The Gofio pipeline used to perform the GIANO-B data reduction is publicly available at The procedures that perform the wavelength calibration, the telluric removal, the search for molecules via cross-correlation and the likelihood analysis employ public IDL libraries (explicitly indicated in the Methods) and are detailed in the text and/or in the cited papers. Even though they are available from the corresponding author upon reasonable request, we encourage other groups to develop similar tools independently and carry out their own analyses for an unbiased check of the results presented in this work. The corresponding author offers to provide any help needed. The high-resolution transmission models underpinning this article will be made available upon reasonable request to S.G. The molecular cross-sections for the various species are available on the Open Science Framework: The radiative-equilibrium profiles computed in this article are available on Zenodo at


  1. 1.

    Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002).

    ADS  CAS  Google Scholar 

  2. 2.

    Deming, D., Brown, T. M., Charbonneau, D., Harrington, J. & Richardson, L. J. A new search for carbon monoxide absorption in the transmission spectrum of the extrasolar planet HD 209458b. Astrophys. J. 622, 1149–1159 (2005).

    ADS  CAS  Google Scholar 

  3. 3.

    Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).

    ADS  Google Scholar 

  4. 4.

    Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Madhusudhan, N. C/O ratio as a dimension for characterising exoplanetary atmospheres. Astrophys. J. 758, 36 (2012).

    ADS  Google Scholar 

  7. 7.

    Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    ADS  Google Scholar 

  8. 8.

    Hawker, G. A., Madhusudhan, N., Cabot, S. H. C. & Gandhi, S. Evidence for multiple molecular species in the hot Jupiter HD 209458b. Astrophys. J. Lett. 863, L11 (2018).

    ADS  Google Scholar 

  9. 9.

    MacDonald, R. J. & Madhusudhan, N. HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017).

    ADS  CAS  Google Scholar 

  10. 10.

    Pinhas, A., Madhusudhan, N., Gandhi, S. & MacDonald, R. J. H2O abundances and cloud properties in ten hot giant exoplanets. Mon. Not. R. Astron. Soc. 482, 1485–1498 (2019).

    ADS  CAS  Google Scholar 

  11. 11.

    Booth, R. A., Clarke, C. J., Madhusudhan, N. & Ilee, J. D. Chemical enrichment of giant planets and discs due to pebble drift. Mon. Not. R. Astron. Soc. 469, 3994–4011 (2017).

    ADS  CAS  Google Scholar 

  12. 12.

    Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014).

    ADS  Google Scholar 

  13. 13.

    Öberg, K. I. & Bergin, E. A. Excess C/O and C/H in outer protoplanetary disk gas. Astrophys. J. Lett. 831, L19 (2016).

    ADS  Google Scholar 

  14. 14.

    Claudi, R. et al. GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy. Eur. Phys. J. Plus 132, 364 (2017).

    Google Scholar 

  15. 15.

    Oliva, E. et al. The GIANO spectrometer: towards its first light at the TNG. Soc. Phot. Instrum. Eng. 8446, 84463T (2012).

    Google Scholar 

  16. 16.

    Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).

    ADS  CAS  Google Scholar 

  17. 17.

    Rainer, M. et al. Introducing GOFIO: a DRS for the GIANO-B near-infrared spectrograph. Proc. SPIE 10702, 1070266 (2018).

    Google Scholar 

  18. 18.

    Welch, B. L. The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  19. 19.

    Welbanks, L. & Madhusudhan, N. On degeneracies in retrievals of exoplanetary transmission spectra. Astron. J. 157, 206 (2019).

    ADS  CAS  Google Scholar 

  20. 20.

    Barstow, J. K. Unveiling cloudy exoplanets: the influence of cloud model choices on retrieval solutions. Mon. Not. R. Astron. Soc. 497, 4183–4195 (2020).

    ADS  Google Scholar 

  21. 21.

    Moses, J. I. et al. Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15 (2011).

    ADS  Google Scholar 

  22. 22.

    Moses, J. I. Chemical kinetics on extrasolar planets. Phil. Trans. R. Soc. A 372, 20130073 (2014).

    ADS  PubMed  Google Scholar 

  23. 23.

    Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).

    ADS  CAS  Google Scholar 

  24. 24.

    Gandhi, S., Brogi, M. & Webb, R. K. Seeing above the clouds with high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 498, 194–204 (2020).

    ADS  Google Scholar 

  25. 25.

    Hood, C. E. et al. Prospects for characterizing the haziest sub-Neptune exoplanets with high-resolution spectroscopy. Astrophys. J. 160, 198 (2020).

    CAS  Google Scholar 

  26. 26.

    Venot, O. et al. Global chemistry and thermal structure models for the hot Jupiter WASP-43b and predictions for JWST. Astrophys. J. 890, 176 (2020).

    ADS  CAS  Google Scholar 

  27. 27.

    Mordasini, C., van Boekel, R., Mollière, P., Henning, T. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).

    ADS  Google Scholar 

  28. 28.

    Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).

    ADS  CAS  Google Scholar 

  29. 29.

    Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS  Google Scholar 

  30. 30.

    Tinetti, G. et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).

    ADS  Google Scholar 

  31. 31.

    Covino, E. et al. The GAPS programme with HARPS-N at TNG. I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1. Astron. Astrophys. 554, A28 (2013).

    Google Scholar 

  32. 32.

    Brogi, M. et al. Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189 733 b. Astron. Astrophys. 615, A16 (2018).

    Google Scholar 

  33. 33.

    Guilluy, G. et al. Exoplanet atmospheres with GIANO. II. Detection of molecular absorption in the dayside spectrum of HD 102195b. Astron. Astrophys. 625, A107 (2019).

    CAS  Google Scholar 

  34. 34.

    Harutyunyan, A. et al. GIANO-B online data reduction software at the TNG. Proc. SPIE 10706, 1070642 (2018).

    Google Scholar 

  35. 35.

    Noll, S. et al. An atmospheric radiation model for Cerro Paranal. Astron. Astrophys. 543, A92 (2012).

    Google Scholar 

  36. 36.

    de Kok, R. J. et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. 554, A82 (2013).

    Google Scholar 

  37. 37.

    Damiano, M. et al. A principal component analysis-based method to analyze high-resolution spectroscopic data on exoplanets. Astrophys. J. 878, 153 (2019).

    ADS  CAS  Google Scholar 

  38. 38.

    Piskorz, D. et al. Evidence for the direct detection of the thermal spectrum of the non-transiting hot gas giant HD 88133 b. Astrophys. J. 832, 131 (2016).

    ADS  Google Scholar 

  39. 39.

    Piskorz, D. et al. Detection of water vapor in the thermal spectrum of the non-transiting hot Jupiter Upsilon Andromedae b. Astron. J. 154, 78 (2017).

    ADS  Google Scholar 

  40. 40.

    Foreman-Mackey, D. et al. A systematic search for transiting planets in the K2 data. Astrophys. J. 806, 215 (2015).

    ADS  Google Scholar 

  41. 41.

    Gandhi, S. & Madhusudhan, N. GENESIS: new self-consistent models of exoplanetary spectra. Mon. Not. R. Astron. Soc. 472, 2334–2355 (2017).

    ADS  CAS  Google Scholar 

  42. 42.

    Pinhas, A., Rackham, B. V., Madhusudhan, N. & Apai, D. Retrieval of planetary and stellar properties in transmission spectroscopy with AURA. Mon. Not. R. Astron. Soc. 480, 5314–5331 (2018).

    ADS  CAS  Google Scholar 

  43. 43.

    Polyansky, O. L. et al. ExoMol molecular line lists—XXX. A complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    ADS  CAS  Google Scholar 

  44. 44.

    Coles, P. A. et al. ExoMol molecular line lists—XXXV. A rotation–vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).

    ADS  CAS  Google Scholar 

  45. 45.

    Barber, R. J. et al. ExoMol line lists—III. An improved hot rotation–vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 437, 1828–1835 (2014).

    ADS  CAS  Google Scholar 

  46. 46.

    Chubb, K. L. et al. ExoMol molecular line lists—XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 493, 1531–1545 (2020).

    ADS  CAS  Google Scholar 

  47. 47.

    Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    ADS  CAS  Google Scholar 

  48. 48.

    Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).

    ADS  CAS  Google Scholar 

  49. 49.

    Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X1Σ+ ground electronic state. Astrophys. J. Suppl. Ser. 216, 15 (2015).

    ADS  Google Scholar 

  50. 50.

    Huang, X. et al. Ames-2016 line lists for 13 isotopologues of CO2: updates, consistency, and remaining issues. J. Quant. Spectros. Radiat. Transfer 203, 224−241 (2017).

    ADS  CAS  Google Scholar 

  51. 51.

    Richard, C. et al. New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transf. 113, 1276–1285 (2012).

    ADS  CAS  Google Scholar 

  52. 52.

    Barstow, J. K., Aigrain, S., Irwin, P. G. J. & Sing, D. K. A consistent retrieval analysis of 10 hot Jupiters observed in transmission. Astrophys. J. 834, 50 (2017).

    ADS  Google Scholar 

  53. 53.

    Cubillos, P. E. et al. Near-ultraviolet transmission spectroscopy of HD 209458b: evidence of ionized iron beyond the planetary Roche lobe. Astron. J. 159, 111 (2020).

    ADS  CAS  Google Scholar 

  54. 54.

    Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).

    ADS  Google Scholar 

  55. 55.

    Webb, R. K. et al. A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L band. Mon. Not. R. Astron. Soc. 494, 108–119 (2020).

    ADS  CAS  Google Scholar 

  56. 56.

    Kilpatrick, B. et al. Community targets of JWST’s Early Release Science Program: evaluation of WASP-63b. Astron. J. 156, 103 (2018).

    ADS  Google Scholar 

  57. 57.

    Malik, M. et al. HELIOS: an open-source, GPU-accelerated radiative transfer code for self-consistent exoplanetary atmospheres. Astron. J. 153, 56 (2017).

    ADS  Google Scholar 

  58. 58.

    Blecic, J., Harrington, J. & Bowman, M. O. TEA: a code calculating thermochemical equilibrium abundances. Astrophys. J. Suppl. Ser. 225, 4 (2016).

    ADS  Google Scholar 

  59. 59.

    Yurchenko, S. N. & Tennyson, J. ExoMol line lists—IV. The rotation–vibration spectrum of methane up to 1500 K. Mon. Not. R. Astron. Soc. 440, 1649–1661 (2014).

    ADS  CAS  Google Scholar 

  60. 60.

    Burrows, A., Marley, M. S. & Sharp, C. M. The near-infrared and optical spectra of methane dwarfs and brown dwarfs. Astrophys. J. 531, 438–446 (2000).

    ADS  CAS  Google Scholar 

  61. 61.

    Kurucz, R. L. Atlas: a Computer Program for Calculating Model Stellar Atmospheres. SAO Special Report 309 (Smithsonian Astrophysical Observatory, 1970).

  62. 62.

    Borysow, J., Frommhold, L. & Birnbaum, G. Collision-induced rototranslational absorption spectra of H2–He pairs at temperatures from 40 to 3000 K. Astrophys. J. 326, 509–515 (1988).

    ADS  CAS  Google Scholar 

  63. 63.

    Borysow, A., Frommhold, L. & Moraldi, M. Collision-induced infrared spectra of H2–He pairs involving 01 vibrational transitions and temperatures from 18 to 7000 K. Astrophys. J. 336, 495–503 (1989).

    ADS  CAS  Google Scholar 

  64. 64.

    Borysow, A. & Frommhold, L. Collision-induced infrared spectra of H2–He pairs at temperatures from 18 to 7000 K. II. Overtone and hot bands. Astrophys. J. 341, 549–555 (1989).

    ADS  CAS  Google Scholar 

  65. 65.

    Borysow, A., Jorgensen, U. G. & Fu, Y. High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001).

    ADS  CAS  Google Scholar 

  66. 66.

    Borysow, A. Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K. Astron. Astrophys. 390, 779–782 (2002).

    ADS  Google Scholar 

  67. 67.

    Cubillos, P. E. An algorithm to compress line-transition data for radiative-transfer calculations. Astrophys. J. 850, 32 (2017).

    ADS  Google Scholar 

  68. 68.

    Bonomo, A. S. et al. The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets. Astron. Astrophys. 602, A107 (2017).

    Google Scholar 

  69. 69.

    Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

    MATH  Google Scholar 

  70. 70.

    Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS  Google Scholar 

  71. 71.

    Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).

    ADS  Google Scholar 

  72. 72.

    Madhusudhan, N., Bitsch, B., Johansen, A. & Eriksson, L. Atmospheric signatures of giant exoplanet formation by pebble accretion. Mon. Not. R. Astron. Soc. 469, 4102–4115 (2017).

    ADS  CAS  Google Scholar 

  73. 73.

    Torres, G., Winn, J. N. & Holman, M. J. Improved parameters for extrasolar transiting planets. Astrophys. J. 677, 1324–1342 (2008).

    ADS  CAS  Google Scholar 

  74. 74.

    Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M. & Gilliland, R. L. Using stellar limb-darkening to refine the properties of HD 209458b. Astrophys. J. 655, 564–575 (2007).

    ADS  Google Scholar 

  75. 75.

    Albrecht, S. et al. Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. Astrophys. J. 757, 18 (2012).

    ADS  Google Scholar 

  76. 76.

    Evans, T. M. et al. A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models. Mon. Not. R. Astron. Soc. 451, 680–694 (2015).

    ADS  CAS  Google Scholar 

  77. 77.

    Naef, D. et al. The ELODIE survey for northern extra-solar planets. III. Three planetary candidates detected with ELODIE. Astron. Astrophys. 414, 351–359 (2004).

    ADS  Google Scholar 

  78. 78.

    Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).

    ADS  CAS  Google Scholar 

  79. 79.

    Lyulin, O. M. & Perevalov, V. I. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 201, 94–103 (2017).

    ADS  CAS  Google Scholar 

Download references


We thank J. Bean for comments that allowed us to improve the manuscript. P.G. gratefully acknowledges support from the Italian Space Agency (ASI) under contract 2018-24-HH.0. S.B. gratefully acknowledges support from the Italian Space Agency (ASI) under contract 2018-16-HH.0. M.B. and S.G. acknowledge support from the UK Science and Technology Facilities Council (STFC) research grant ST/S000631/1. A.S.B., G.G., A.M., G.M., and A.S. acknowledge financial contributions from the agreement ASI-INAF number 2018-16-HH.0. A.S.B., R. Claudi, G.L., A.M., V.N., L.P., A.S. and G.S. acknowledge support from PRIN INAF 2019. These results are based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). S.N.Y. acknowledges STFC Project number ST/R000476/1. The research leading to these results received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 679633: Exo-Atmos).

Author information




P.G., M.B. and G.G. carried out the primary data reduction and data analysis. S.G. and P.C. ran theoretical models for the planet’s atmosphere and transmission spectra. P.G., M.B., A.S.B., L.F., S.G., and P.C. contributed to the writing of the manuscript. P.G., M.B., S.G., A.S.B., A.S., and L.F. planned the tests to assess the reliability of the molecular detections through cross-correlation techniques. The underlying observation programme was conceived and organized by A.B., E.C., R. Claudi, S.D., S.B., A.F.L., A.M., E.M., G.M., I.P., E.P., G.P., and A.S. A.S.B. and V.N. planned the observations. R. Claudi is in charge of the schedules of the observations. Observations with GIANO-B were carried out by M.R., K.B., M.P., and I.C. M.R. and A.H. wrote, maintained and updated the reduction pipeline. A.B. maintained and updated the observation archive. R. Cosentino, A.F., A.H., M.P., E.P. and A.G. maintained and upgraded the GIANO-B instrument at the TNG. D.F., A.T., N.S., M.L., and A.G. contributed to the design and construction of the GIANO-B spectrograph. K.L.C. and S.N.Y. have provided molecular data. All authors contributed to the interpretation of the data and the results.

Corresponding author

Correspondence to Paolo Giacobbe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jacob Bean and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Detection and analysis of the H2O signal in the atmosphere of HD 209458b.

a, Map of the significance of the cross-correlation values as a function of the planetary radial-velocity semi-amplitude KP and the planet rest-frame velocity Vrest. b, Values of the cross-correlation function in the planet rest-frame as a function of the orbital phase and Vrest. The horizontal dashed lines denote the transit ingress and egress, while the vertical dashed line indicates the expected position of the planetary signal. c, Distribution of CCF values in-trail and out-of-trail. d, Significance of the cross-correlation values as a function of Vrest. e, Significance of the cross-correlation values as a function of KP. The dashed line indicates the peak position, while the dotted line shows the 1σ confidence interval.

Extended Data Fig. 2 Theoretical pressure−temperature profiles of the atmosphere of HD 209458b.

The panels show the temperature variation with pressure for different atmospheric C/O ratios and metallicities ([M/H]) under the assumption of radiative and thermochemical equilibrium.

Extended Data Fig. 3 Theoretical pressure−abundance profiles of the atmosphere of HD 209458b.

The panels show the abundance profiles (mole fraction) of atomic and molecular species for different atmospheric C/O ratios and metallicities ([M/H]) under the assumption of radiative and thermochemical equilibrium. Each colour corresponds to a different species (see key at top-right).

Extended Data Fig. 4 Comparison of atmospheric models in radiative and thermochemical equilibrium.

The six panels show the goodness of fit for the mixed models containing all the detected species as a function of C/O ratio, metallicity and presence of clouds. The filled circles represent the models with clouds, while the empty circles indicate the clear models with no clouds. The best model is found for a cloudy atmosphere with C/O = 1.05 and subsolar metallicity of 0.001 × solar (top-left panel). The goodness of fit of the models is shown with respect to the best model in units of standard deviations σ (the higher σ, the more disfavoured the model). The horizontal dashed lines indicate the 3σ level adopted as a threshold to distinguish different scenarios. Note that for display purposes the y-axis scale is linear between 0σ and 1σ, and logarithmic elsewhere.

Extended Data Fig. 5 Selection of the GIANO-B spectral orders.

The Earth’s telluric spectrum and the theoretical transmission spectra of H2O, HCN, NH3, C2H2, CO and CH4 are shown from top to bottom in relative flux units. The colours display for each molecule the orders selected for the cross-correlation procedure, while the grey vertical bands denote the orders excluded owing to the failure of the spectral alignment and/or of the wavelength calibration procedure.

Extended Data Fig. 6 Stages of the analysis of GIANO-B spectra.

Example of our data reduction process over a small wavelength interval. a, Extracted spectra; b, residuals after normalization of each spectrum (each row) by its median value (throughput correction); c, residuals after ‘standardization’ of each spectral channel (each column) by mean subtraction; d, residuals after PCA telluric removal; e, residuals after division of each spectral channel by its variance and multiplication of the final spectral matrix by the median of the variances of the individual spectral channels, in order to conserve the flux (not applied in the likelihood framework).

Extended Data Table 1 Log of the HD 209458b GIANO-B observations
Extended Data Table 2 HD 209458 system parameters
Extended Data Table 3 Line list databases for the search for molecular species
Extended Data Table 4 Line lists and VMRs of isothermal atmospheric models

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giacobbe, P., Brogi, M., Gandhi, S. et al. Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere. Nature 592, 205–208 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing