Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Protecting the global ocean for biodiversity, food and climate

An Author Correction to this article was published on 08 April 2021

This article has been updated


The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global conservation priorities.
Fig. 2: Co-benefits of protection.
Fig. 3: Prioritizing multiple objectives given unknown preferences.
Fig. 4: National contributions to biodiversity conservation and coordinated implementation.

Data availability

The underlying data used in this study are available from the sources listed in the Supplementary Information.

Code availability

The R code that supports the findings of this study is available at

Change history


  1. 1.

    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).

    Google Scholar 

  2. 2.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    ADS  PubMed  CAS  Google Scholar 

  3. 3.

    Marine Conservation Institute. The Marine Protection Atlas. (2020).

  4. 4.

    Santos, C. F. et al. Integrating climate change in ocean planning. Nat. Sustain. 3, 505–516 (2020).

    Google Scholar 

  5. 5.

    Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    ADS  PubMed  Google Scholar 

  6. 6.

    Brondizio, E.S., Settele, J., Díaz, S. & Ngo, H. T. (eds) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  7. 7.

    IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate (2019).

  8. 8.

    Horta e Costa, B. et al. A regulation-based classification system for Marine Protected Areas (MPAs). Mar. Policy 72, 192–198 (2016).

    Google Scholar 

  9. 9.

    Oregon State University, IUCN World Commission on Protected Areas, Marine Conservation Institute, National Geographic Society, & UNEP World Conservation Monitoring Centre. An Introduction to The MPA Guide. (2019).

  10. 10.

    Lester, S. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    ADS  Google Scholar 

  11. 11.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    ADS  PubMed  CAS  Google Scholar 

  12. 12.

    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).

    ADS  PubMed  CAS  Google Scholar 

  13. 13.

    Selig, E. R. et al. Global priorities for marine biodiversity conservation. PLoS One 9, e82898 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kuempel, C. D., Jones, K. R., Watson, J. E. M. & Possingham, H. P. Quantifying biases in marine-protected-area placement relative to abatable threats. Conserv. Biol. 33, 1350–1359 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    McGowan, J. et al. Prioritizing debt conversions for marine conservation. Conserv. Biol. 34, 1065–1075 (2020).

    PubMed  Google Scholar 

  16. 16.

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    PubMed  Google Scholar 

  18. 18.

    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. Version 08/2016c (2016).

  20. 20.

    Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33 (2011).

    ADS  CAS  Google Scholar 

  21. 21.

    Nakicenovic, N. et al. Special Report on Emissions Scenarios (SRES): a Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2000).

  22. 22.

    Goñi, R., Badalamenti, F. & Tupper, M. H. in Marine Protected Areas: A Multidisciplinary Approach (ed. Claudet, J.) 72–98 (Cambridge Univ. Press, 2011).

  23. 23.

    Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2009).

    Google Scholar 

  24. 24.

    Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Gaines, S. D., Lester, S. E., Grorud-Colvert, K., Costello, C. & Pollnac, R. Evolving science of marine reserves: new developments and emerging research frontiers. Proc. Natl Acad. Sci. USA 107, 18251–18255 (2010).

    ADS  PubMed  CAS  Google Scholar 

  26. 26.

    Hastings, A. & Botsford, L. W. Equivalence in yield from marine reserves and traditional fisheries management. Science 284, 1537–1538 (1999).

    ADS  PubMed  CAS  Google Scholar 

  27. 27.

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    ADS  PubMed  CAS  Google Scholar 

  28. 28.

    Cabral, R. B. et al. A global network of marine protected areas for food. Proc. Natl Acad. Sci. USA 117, 28134–28139 (2020).

    PubMed  CAS  Google Scholar 

  29. 29.

    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).

    Google Scholar 

  30. 30.

    Estes, E. R. et al. Persistent organic matter in oxic subseafloor sediment. Nat. Geosci. 12, 126 (2019).

    ADS  CAS  Google Scholar 

  31. 31.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS  PubMed  CAS  Google Scholar 

  32. 32.

    Metz, B., Davidson, O. de Coninck, H., Loos, M., & Meyer, L. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  33. 33.

    Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    ADS  PubMed  CAS  Google Scholar 

  34. 34.

    Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).

    CAS  Google Scholar 

  35. 35.

    Legge, O. et al. Carbon on the Northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020).

    Google Scholar 

  36. 36.

    Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 111, 8861–8866 (2014).

    ADS  PubMed  CAS  Google Scholar 

  37. 37.

    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    ADS  PubMed  CAS  Google Scholar 

  39. 39.

    Mangel, M. Irreducible uncertainties, sustainable fisheries and marine reserves. Evol. Ecol. Res. 2, 547–557 (2000).

    Google Scholar 

  40. 40.

    Rodwell, L. D. & Roberts, C. M. Fishing and the impact of marine reserves in a variable environment. Can. J. Fish. Aquat. Sci. 61, 2053–2068 (2004).

    Google Scholar 

  41. 41.

    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    McCrea-Strub, A. et al. Understanding the cost of establishing marine protected areas. Mar. Policy 35, 1–9 (2011).

    Google Scholar 

  43. 43.

    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524 (2019).

    Google Scholar 

  44. 44.

    Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018).

    ADS  PubMed  CAS  Google Scholar 

  45. 45.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Google Scholar 

  46. 46.

    Roberts, C. M., O’Leary, B. C. & Hawkins, J. P. Climate change mitigation and nature conservation both require higher protected area targets. Phil. Trans. R. Soc. Lond. B 375, 20190121 (2020).

    Google Scholar 

  47. 47.

    FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals (2018).

  48. 48.

    RAM Legacy Stock Assessment Database v.4.44 [Dataset]. (2018).

  49. 49.

    Higgs, N. & Attrill, M. Biases in biodiversity: wide-ranging species are discovered first in the deep sea. Front. Mar. Sci. 2, 61 (2015).

    Google Scholar 

  50. 50.

    Clark, M. R., Watling, L., Rowden, A. A., Guinotte, J. M. & Smith, C. R. A global seamount classification to aid the scientific design of marine protected area networks. Ocean Coast. Manage. 54, 19–36 (2011).

    Google Scholar 

  51. 51.

    Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).

    Google Scholar 

  52. 52.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Google Scholar 

  53. 53.

    Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).

    ADS  Google Scholar 

  54. 54.

    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed  Google Scholar 

  55. 55.

    Froese, R. & Pauly, D. FishBase. (2019).

  56. 56.

    Palomares, M. L. D. & Pauly, D. SeaLifeBase. (2019).

  57. 57.

    The Nature Conservancy. Marine Ecoregions and Pelagic Provinces of the World. (2012).

  58. 58.

    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    IUCN. 2018 IUCN Red List of Threatened Species. (2018).

  60. 60.

    Lehtomäki, J. & Moilanen, A. Methods and workflow for spatial conservation prioritization using zonation. Environ. Model. Softw. 47, 128–137 (2013).

    Google Scholar 

  61. 61.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    ADS  PubMed  CAS  Google Scholar 

  62. 62.

    Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).

    PubMed  Google Scholar 

  63. 63.

    Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    PubMed  Google Scholar 

  64. 64.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS  PubMed  CAS  Google Scholar 

  65. 65.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    May, R. M. Islands biogeography and the design of wildlife preserves. Nature 254, 177–178 (1975).

    ADS  Google Scholar 

  67. 67.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).

  68. 68.

    Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).

    Google Scholar 

  69. 69.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    ADS  CAS  Google Scholar 

  70. 70.

    Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Fishery consequences of marine reserves: short-term pain for longer-term gain. Ecol. Appl. 26, 818–829 (2016).

    PubMed  Google Scholar 

  71. 71.

    Walters, C. J., Hilborn, R. & Parrish, R. An equilibrium model for predicting the efficacy of marine protected areas in coastal environments. Can. J. Fish. Aquat. Sci. 64, 1009–1018 (2007).

    Google Scholar 

  72. 72.

    Guénette, S. & Pitcher, T. J. An age-structured model showing the benefits of marine reserves in controlling overexploitation. Fish. Res. 39, 295–303 (1999).

    Google Scholar 

  73. 73.

    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Chapman & Hall, 1957).

  74. 74.

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    ADS  PubMed  CAS  Google Scholar 

  75. 75.

    Eigaard, O. R. et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27–i43 (2016).

    Google Scholar 

  76. 76.

    Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl Acad. Sci. USA 114, 8301–8306 (2017).

    PubMed  CAS  Google Scholar 

  77. 77.

    de Madron, X. D. et al. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25, 2387–2409 (2005).

    ADS  Google Scholar 

  78. 78.

    Ferré, B., De Madron, X. D., Estournel, C., Ulses, C. & Le Corre, G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071–2091 (2008).

    ADS  Google Scholar 

  79. 79.

    Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish. 3, 114–136 (2002).

    Google Scholar 

  80. 80.

    Oberle, F. K., Storlazzi, C. D. & Hanebuth, T. J. What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Syst. 159, 109–119 (2016).

    Google Scholar 

  81. 81.

    Palanques, A., Guillén, J. & Puig, P. Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol. Oceanogr. 46, 1100–1110 (2001).

    ADS  Google Scholar 

  82. 82.

    Gray, J. in Oceanography and Marine Biology Annual Review Vol. 12 (ed. Barnes, H.) 223–261 (George Allen & Unwin, 1974).

  83. 83.

    McArthur, M. et al. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 88, 21–32 (2010).

    ADS  Google Scholar 

  84. 84.

    Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    PubMed  CAS  Google Scholar 

  85. 85.

    Spinelli, G. A., Giambalvo, E. R. & Fisher, A. T. in Hydrogeology of the Oceanic Lithosphere (eds Davis, E. E. & Elderfield, H.) Ch. 6 (Cambridge Univ. Press, 2004).

  86. 86.

    Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

    ADS  CAS  Google Scholar 

  87. 87.

    Paraska, D. W., Hipsey, M. R. & Salmon, S. U. Sediment diagenesis models: review of approaches, challenges and opportunities. Environ. Model. Softw. 61, 297–325 (2014).

    Google Scholar 

  88. 88.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).

    Google Scholar 

  89. 89.

    Wilkinson, G. M., Besterman, A., Buelo, C., Gephart, J. & Pace, M. L. A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems. Sci. Rep. 8, 15736 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Rodriguez, A. B., McKee, B. A., Miller, C. B., Bost, M. C. & Atencio, A. N. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  91. 91.

    Moilanen, A., Leathwick, J. R. & Quinn, J. M. Spatial prioritization of conservation management. Conserv. Lett. 4, 383–393 (2011).

    Google Scholar 

  92. 92.

    Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. NY Acad. Sci. 1322, 61–76 (2014).

    ADS  PubMed  Google Scholar 

  93. 93.

    Carwardine, J. et al. Conservation planning when costs are uncertain. Conserv. Biol. 24, 1529–1537 (2010).

    PubMed  Google Scholar 

  94. 94.

    Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).

    PubMed  Google Scholar 

  95. 95.

    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).

    PubMed  Google Scholar 

  96. 96.

    Stock, A. & Micheli, F. Effects of model assumptions and data quality on spatial cumulative human impact assessments. Glob. Ecol. Biogeogr. 25, 1321–1332 (2016).

    Google Scholar 

Download references


This study was funded by the National Geographic Society and the Leonardo DiCaprio Foundation. D.M. was supported by the French Foundation for Research on Biodiversity (FRB).

Author information




E.S., J. Mayorga, D.B., R.B.C., T.B.A., W.C., C.C., F.F., A.M.F., S.D.G., W.G., B.S.H., J. McGowan, D.M., H.P.P., K.D.R., B.W. and J.L. conceived the study and designed the prioritization framework; J. Mayorga, R.B.C., T.B.A., A.A., W.C., A.M.F., C.G., W.G., B.S.H., A.H., K.K., K.K.-R., F.L., L.E.M., D.M., J.P.-A. and B.W. provided data and/or conducted analyses; J. Mayorga, D.B., R.B.C. and A.H. wrote computer code; and E.S., J. Mayorga, D.B., R.B.C., T.B.A., W.C., C.C., F.F., A.M.F., S.D.G., W.G., B.S.H., J. McGowan, L.E.M., D.M., H.P.P., K.D.R., B.W. and J.L. wrote the paper.

Corresponding author

Correspondence to Enric Sala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Charles Ehler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-35, Supplementary Tables 1-2 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sala, E., Mayorga, J., Bradley, D. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing