Abstract
The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The underlying data used in this study are available from the sources listed in the Supplementary Information.
Code availability
The R code that supports the findings of this study is available at https://github.com/emlab-ucsb/ocean-conservation-priorities.
Change history
08 April 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03496-1
References
Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).
Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).
Marine Conservation Institute. The Marine Protection Atlas. http://mpatlas.org (2020).
Santos, C. F. et al. Integrating climate change in ocean planning. Nat. Sustain. 3, 505–516 (2020).
Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).
Brondizio, E.S., Settele, J., Díaz, S. & Ngo, H. T. (eds) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate https://www.ipcc.ch/srocc/ (2019).
Horta e Costa, B. et al. A regulation-based classification system for Marine Protected Areas (MPAs). Mar. Policy 72, 192–198 (2016).
Oregon State University, IUCN World Commission on Protected Areas, Marine Conservation Institute, National Geographic Society, & UNEP World Conservation Monitoring Centre. An Introduction to The MPA Guide. https://www.protectedplanet.net/c/mpa-guide (2019).
Lester, S. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).
Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).
Selig, E. R. et al. Global priorities for marine biodiversity conservation. PLoS One 9, e82898 (2014).
Kuempel, C. D., Jones, K. R., Watson, J. E. M. & Possingham, H. P. Quantifying biases in marine-protected-area placement relative to abatable threats. Conserv. Biol. 33, 1350–1359 (2019).
McGowan, J. et al. Prioritizing debt conversions for marine conservation. Conserv. Biol. 34, 1065–1075 (2020).
Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).
Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. Version 08/2016c https://www.aquamaps.org/ (2016).
Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33 (2011).
Nakicenovic, N. et al. Special Report on Emissions Scenarios (SRES): a Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2000).
Goñi, R., Badalamenti, F. & Tupper, M. H. in Marine Protected Areas: A Multidisciplinary Approach (ed. Claudet, J.) 72–98 (Cambridge Univ. Press, 2011).
Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2009).
Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).
Gaines, S. D., Lester, S. E., Grorud-Colvert, K., Costello, C. & Pollnac, R. Evolving science of marine reserves: new developments and emerging research frontiers. Proc. Natl Acad. Sci. USA 107, 18251–18255 (2010).
Hastings, A. & Botsford, L. W. Equivalence in yield from marine reserves and traditional fisheries management. Science 284, 1537–1538 (1999).
Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).
Cabral, R. B. et al. A global network of marine protected areas for food. Proc. Natl Acad. Sci. USA 117, 28134–28139 (2020).
Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).
Estes, E. R. et al. Persistent organic matter in oxic subseafloor sediment. Nat. Geosci. 12, 126 (2019).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Metz, B., Davidson, O. de Coninck, H., Loos, M., & Meyer, L. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).
Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).
Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).
Legge, O. et al. Carbon on the Northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020).
Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 111, 8861–8866 (2014).
Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).
Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).
Mangel, M. Irreducible uncertainties, sustainable fisheries and marine reserves. Evol. Ecol. Res. 2, 547–557 (2000).
Rodwell, L. D. & Roberts, C. M. Fishing and the impact of marine reserves in a variable environment. Can. J. Fish. Aquat. Sci. 61, 2053–2068 (2004).
Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).
McCrea-Strub, A. et al. Understanding the cost of establishing marine protected areas. Mar. Policy 35, 1–9 (2011).
Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524 (2019).
Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018).
O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).
Roberts, C. M., O’Leary, B. C. & Hawkins, J. P. Climate change mitigation and nature conservation both require higher protected area targets. Phil. Trans. R. Soc. Lond. B 375, 20190121 (2020).
FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals http://www.fao.org/3/I9540EN/i9540en.pdf (2018).
RAM Legacy Stock Assessment Database v.4.44 [Dataset]. https://doi.org/10.5281/zenodo.2542919 (2018).
Higgs, N. & Attrill, M. Biases in biodiversity: wide-ranging species are discovered first in the deep sea. Front. Mar. Sci. 2, 61 (2015).
Clark, M. R., Watling, L., Rowden, A. A., Guinotte, J. M. & Smith, C. R. A global seamount classification to aid the scientific design of marine protected area networks. Ocean Coast. Manage. 54, 19–36 (2011).
Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).
Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).
Froese, R. & Pauly, D. FishBase. www.fishbase.org. (2019).
Palomares, M. L. D. & Pauly, D. SeaLifeBase. www.sealifebase.org (2019).
The Nature Conservancy. Marine Ecoregions and Pelagic Provinces of the World. http://data.unep-wcmc.org/datasets/38 (2012).
Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
IUCN. 2018 IUCN Red List of Threatened Species. http://www.iucnredlist.org/ (2018).
Lehtomäki, J. & Moilanen, A. Methods and workflow for spatial conservation prioritization using zonation. Environ. Model. Softw. 47, 128–137 (2013).
Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).
Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).
Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).
May, R. M. Islands biogeography and the design of wildlife preserves. Nature 254, 177–178 (1975).
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).
Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Fishery consequences of marine reserves: short-term pain for longer-term gain. Ecol. Appl. 26, 818–829 (2016).
Walters, C. J., Hilborn, R. & Parrish, R. An equilibrium model for predicting the efficacy of marine protected areas in coastal environments. Can. J. Fish. Aquat. Sci. 64, 1009–1018 (2007).
Guénette, S. & Pitcher, T. J. An age-structured model showing the benefits of marine reserves in controlling overexploitation. Fish. Res. 39, 295–303 (1999).
Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Chapman & Hall, 1957).
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
Eigaard, O. R. et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27–i43 (2016).
Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl Acad. Sci. USA 114, 8301–8306 (2017).
de Madron, X. D. et al. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25, 2387–2409 (2005).
Ferré, B., De Madron, X. D., Estournel, C., Ulses, C. & Le Corre, G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071–2091 (2008).
Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish. 3, 114–136 (2002).
Oberle, F. K., Storlazzi, C. D. & Hanebuth, T. J. What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Syst. 159, 109–119 (2016).
Palanques, A., Guillén, J. & Puig, P. Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol. Oceanogr. 46, 1100–1110 (2001).
Gray, J. in Oceanography and Marine Biology Annual Review Vol. 12 (ed. Barnes, H.) 223–261 (George Allen & Unwin, 1974).
McArthur, M. et al. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 88, 21–32 (2010).
Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).
Spinelli, G. A., Giambalvo, E. R. & Fisher, A. T. in Hydrogeology of the Oceanic Lithosphere (eds Davis, E. E. & Elderfield, H.) Ch. 6 (Cambridge Univ. Press, 2004).
Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).
Paraska, D. W., Hipsey, M. R. & Salmon, S. U. Sediment diagenesis models: review of approaches, challenges and opportunities. Environ. Model. Softw. 61, 297–325 (2014).
Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).
Wilkinson, G. M., Besterman, A., Buelo, C., Gephart, J. & Pace, M. L. A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems. Sci. Rep. 8, 15736 (2018).
Rodriguez, A. B., McKee, B. A., Miller, C. B., Bost, M. C. & Atencio, A. N. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).
Moilanen, A., Leathwick, J. R. & Quinn, J. M. Spatial prioritization of conservation management. Conserv. Lett. 4, 383–393 (2011).
Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. NY Acad. Sci. 1322, 61–76 (2014).
Carwardine, J. et al. Conservation planning when costs are uncertain. Conserv. Biol. 24, 1529–1537 (2010).
Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).
Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).
Stock, A. & Micheli, F. Effects of model assumptions and data quality on spatial cumulative human impact assessments. Glob. Ecol. Biogeogr. 25, 1321–1332 (2016).
Acknowledgements
This study was funded by the National Geographic Society and the Leonardo DiCaprio Foundation. D.M. was supported by the French Foundation for Research on Biodiversity (FRB).
Author information
Authors and Affiliations
Contributions
E.S., J. Mayorga, D.B., R.B.C., T.B.A., W.C., C.C., F.F., A.M.F., S.D.G., W.G., B.S.H., J. McGowan, D.M., H.P.P., K.D.R., B.W. and J.L. conceived the study and designed the prioritization framework; J. Mayorga, R.B.C., T.B.A., A.A., W.C., A.M.F., C.G., W.G., B.S.H., A.H., K.K., K.K.-R., F.L., L.E.M., D.M., J.P.-A. and B.W. provided data and/or conducted analyses; J. Mayorga, D.B., R.B.C. and A.H. wrote computer code; and E.S., J. Mayorga, D.B., R.B.C., T.B.A., W.C., C.C., F.F., A.M.F., S.D.G., W.G., B.S.H., J. McGowan, L.E.M., D.M., H.P.P., K.D.R., B.W. and J.L. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature thanks Charles Ehler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Figures 1-35, Supplementary Tables 1-2 and Supplementary References.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sala, E., Mayorga, J., Bradley, D. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021). https://doi.org/10.1038/s41586-021-03371-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-03371-z