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            Abstract
Two-dimensional (2D) materials1,2 and the associated van der Waals (vdW) heterostructures3,4,5,6,7 have provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching requirements, through layer-by-layer mechanical restacking or sequential synthesis. However, the 2D vdW heterostructures explored so far have been usually limited to relatively simple heterostructures with a small number of blocks8,9,10,11,12,13,14,15,16,17,18. The preparation of high-order vdW superlattices with larger number of alternating units is exponentially more difficult, owing to the limited yield and material damage associated with each sequential restacking or synthesis step8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29. Here we report a straightforward approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from 2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This strategy can be extended to create diverse 2D/2D vdW superlattices, more complex 2D/2D/2D vdW superlattices, and beyond-2D materials, including three-dimensional (3D) thin-film materials and 1D nanowires, to generate mixed-dimensional vdW superlattices, such as 3D/2D, 3D/2D/2D, 1D/2D and 1D/3D/2D vdW superlattices. This study demonstrates a general approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality and topology, and defines a rich material platform for both fundamental studies and technological applications.
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                    Fig. 1: Schematic illustration of the fabrication process of roll-up vdW superlattices.[image: ]


Fig. 2: Structural characterizations of SnS2/WSe2 roll-ups and high-order vdW superlattices.[image: ]


Fig. 3: Electrical transport and magnetotransport properties of the SnS2/WSe2 roll-up vdW superlattices.[image: ]


Fig. 4: Multi-dimensional roll-up vdW superlattices.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Growth of SnS2/WSe2 vdW heterostructures.
a, Pre-grown WSe2 monolayer. bâ€“h, The top-layer SnS2 nucleates and grows at the edge (bâ€“d) or the corner (eâ€“h) of the pre-grown WSe2 monolayer and expands laterally to eventually achieve full coverage of monolayer SnS2 on monolayer WSe2 (d, h). Scale bars, 20 Î¼m.


Extended Data Fig. 2 Atomic structure and differential charge density calculated for the SnS2/WSe2 heterobilayer.
a, TEM image of the SnS2/WSe2 heterobilayer. The moirÃ© pattern shows a lattice constant of 3.34 nm, and the lattice consists of 10 Ã— 10 WSe2 and 9 Ã— 9 SnS2. Scale bar, 2 nm. b, c, Top (b) and side (c) view of the atomic structure and the differential charge density calculated for the SnS2/WSe2 heterobilayer. The amaranth and blue isosurfaces represent negative and positive charge density difference, respectively, between the bilayer vdW heterostructure and the separated layers. The isosurface value is chosen as 0.0005e auâˆ’3.


Extended Data Fig. 3 Optical spectra of the SnS2/WSe2 systems.
a, Photoluminescence spectra of a typical WSe2 monolayer (black line), a SnS2/WSe2 heterobilayer (blue line) and a SnS2/WSe2 vdW superlattice (red line). b, Raman spectra of a typical WSe2 monolayer (black line), SnS2/WSe2 heterobilayers (blue line) and a SnS2/WSe2 vdW superlattice (red line).


Extended Data Fig. 4 Schematic illustration and electrical characterizations of SnS2/WSe2 roll-up FETs.
a, SnS2/WSe2 heterobilayer FET. b, SnS2/WSe2 roll-up FET. The pink colour represents WSe2, yellow denotes SnS2 and gold represents the Cr/Au contact pads. c, d, Statistical distribution of mobility (c) and carrier concentration (d) of SnS2/WSe2 heterobilayer FETs and SnS2/WSe2 roll-up FETs. e, Normalized magnetoresistance of the roll-up vdW superlattices with different rotation angles Î¸ at T = 3 K. Both the shapes and amplitudes overlap when the field is normalized to BsinÎ¸.


Extended Data Fig. 5 Various 2D/2D roll-up vdW superlattices.
a, Optical microscopy image of MoS2/WS2 heterobilayer. Scale bar, 10 Î¼m. b, SEM image of MoS2/WS2 roll-up vdW superlattice. Scale bar, 1 Î¼m. c, Raman spectra of a typical MoS2/WS2 heterobilayer (black line) and a MoS2/WS2 roll-up vdW superlattice (red line). The peaks at 353 cmâˆ’1 and 381 cmâˆ’1 correspond to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of WS2 and MoS2, and the peaks at 415 cmâˆ’1 and 402 cmâˆ’1 correspond to the A1g mode of WS2 and MoS2, respectively. d, EDS mapping images of Mo, W and S for the MoS2/WS2 roll-up vdW superlattice. Scale bars, 200 nm. e, f, Optical microscopy image of MoSe2/WSe2 heterobilayer (e) and MoSe2/WSe2 roll-up vdW superlattice (f). Scale bars, 5 Î¼m. g, Raman spectra of a typical MoSe2/WSe2 heterobilayer (black line) and a MoSe2/WSe2 roll-up vdW superlattice (red line). The peaks at 246 cmâˆ’1 and 282 cmâˆ’1 correspond to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of WSe2 and MoSe2, respectively, and the peak at 237 cmâˆ’1 to the A1g mode of MoSe2. h, EDS mapping images of Mo, W and Se for the MoSe2/WSe2 roll-up vdW superlattice. Scale bars, 100 nm. i, Optical microscopy image of the SnS2/MoS2 heterobilayer. Scale bar, 5 Î¼m. j, SEM image of the SnS2/MoS2 roll-up vdW superlattice. Scale bar, 200 nm. k, EDS elemental analysis of the SnS2/MoS2 roll-up vdW superlattice. l, EDS mapping images of Mo, Sn and S for the SnS2/MoS2 roll-up vdW superlattice. Scale bars, 200 nm. m, n, Optical microscopy image of the NbSe2/MoSe2 vdW heterostructure (m) and the NbSe2/MoSe2 roll-up vdW superlattice (n). Scale bars, 5 Î¼m. o, Raman spectra of the NbSe2/MoSe2 vdW heterostructure (black line) and the NbSe2/MoSe2 roll-up vdW superlattice (red line), showing resonance peaks at 235 cmâˆ’1 and 283 cmâˆ’1, corresponding to the A1g and \({{\rm{E}}}_{{\rm{2g}}}^{1}\) modes of MoSe2, respectively, and at 248 cmâˆ’1, corresponding to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of NbSe2. p, Optical microscopy image of the Cr5Te8/WSe2 vdW heterostructure. Scale bar, 10 Î¼m. q, SEM image of the Cr5Te8/WSe2 roll-up vdW superlattice. Scale bar, 1 Î¼m. r, Raman spectroscopy of the Cr5Te8 nanosheet (blue line), Cr5Te8/WSe2 vdW heterostructure (black line) and Cr5Te8/WSe2 roll-up vdW superlattices (red line). The two characteristic peaks at 128 cmâˆ’1 and 142 cmâˆ’1 correspond to Cr5Te8, and the characteristic peak at 250 cmâˆ’1 corresponds to WSe2. s, Optical microscopy image of the SnSe2/WSe2 heterobilayer. Scale bar, 20 Î¼m. t, SEM image of the SnSe2/WSe2 roll-up vdW superlattice. Scale bar, 1 Î¼m. u, Raman spectra of the SnSe2/WSe2 heterobilayers (black line) and SnSe2/WSe2 roll-up vdW superlattice (red line), showing a resonance peak at 188 cmâˆ’1, corresponding to the A1g mode of SnSe2, and at 251 cmâˆ’1, corresponding to the \({{\rm{E}}}_{{\rm{2g}}}^{1}\) mode of WSe2. v, w, Optical microscopy images of the In2Se3/WSe2 heterobilayer. Scale bars, 10 Î¼m. x, SEM image of a typical In2Se3/WSe2 roll-up vdW superlattice. Scale bar, 1 Î¼m.


Extended Data Fig. 6 Optical spectra of Al2O3/WSe2 systems.
a, b, Raman (a) and photoluminescence (b) spectra of monolayer (1L) WSe2 (black line), Al2O3/1L WSe2 (blue line) heterostructure and Al2O3/1L WSe2 vdW superlattice (red line). c, d, Raman (c) and photoluminescence (d) spectra of bilayer (2L) WSe2 (black line), Al2O3/2L WSe2 (blue line) heterostructure and Al2O3/2L WSe2 vdW superlattice (red line).


Extended Data Fig. 7 Selected-area electron diffraction (SAED) images of WSe2 roll-ups with different chiral angles.
The measured distance between spots confirms that the lattice constant of WSe2 is 0.33 nm. The SAED patterns for different WSe2 roll-ups show distinct features, with two sets of hexagonal patterns with a rotation angle of 2Î¸, where Î¸ is the chiral angle of the roll-up. The chiral angles of the four roll-ups are determined to be Î¸ = 2.5Â° (a), Î¸ = 8Â° (b), Î¸ = 16Â° (c) and Î¸ = 20.5Â° (d). Scale bars, 5 nmâˆ’1.


Extended Data Fig. 8 SAED images of SnS2/WSe2 vdW superlattice roll-ups with different chiral angles.
The SAED patterns for different SnS2/WSe2 roll-ups clearly show the SnS2 diffraction pattern (red) and the WSe2 diffraction pattern (blue). The distance measured between spots further confirms that the lattice constant of WSe2 is 0.33 nm and that of SnS2 is 0.37 nm. The diffraction spots of SnS2 and WSe2 are well aligned, suggesting epitaxial growth of the heterostructure. The chiral angles are measured to be Î¸ = 10Â° (a), Î¸ = 15Â° (b), Î¸ = 19Â° (c), Î¸ = 22Â° (d), Î¸ = 24Â° (e) and Î¸ = 25Â° (f). Scale bars, 5 nmâˆ’1.


Extended Data Fig. 9 MoirÃ© patterns of SnS2/WSe2 roll-up vdW superlattice.
a, Low-resolution TEM image of a SnS2/WSe2 roll-up. Scale bar, 1 Î¼m. b, SAED image of the SnS2/WSe2 roll-up. Scale bar, 5 nmâˆ’1. The white dashed double arrow indicates the axis direction of the roll-up, and the two red dashed lines indicate the major axis of the top wall and bottom wall, which forms a chiral angle of Î¸ = Â±22Â° with the roll-up axis. c, High-angle annular dark-field STEM image of the periodic moirÃ© superlattices of the SnS2/WSe2 vdW superlattice roll-up; the yellow dashed rhombus is the corresponding moirÃ© unit cells with moirÃ© superlattice constant LM = 3.34 nm. Scale bar, 2 nm. The moirÃ© superlattice results from the SnS2/WSe2 heterobilayer on the top wall of the roll-up. The red dashed line indicates a major axis of the top-wall SnS2/WSe2 heterobilayer and has a chiral angle of Î¸ = 22Â° from the roll-up axis (white dashed double arrow). d, The corresponding atomic model of the heterobilayer moirÃ© superlattices of SnS2/WSe2. Scale bar, 2 nm. Lattice constants of 0.33 nm and 0.37 nm were used for WSe2 and SnS2, respectively. e, TEM image of the periodic moirÃ© superlattices of the SnS2/WSe2 roll-up. The blue dashed rhombus is the corresponding moirÃ© unit cell with LM = 2.29 nm. Scale bar, 2 nm. The moirÃ© superlattice mainly results from WSe2 in the top wall and the WSe2 bottom wall, with a folding (twist) angle of 44Â° between the top and bottom WSe2. The two red dashed lines indicate the major axes of the top and bottom walls, which form a chiral angle of Â±22Â° with the roll-up axis (white dashed double arrow). f, The corresponding atomic model of the moirÃ© superlattices of WSe2/WSe2 homostructure with a folding angle of 44Â°. Scale bar, 2 nm.


Extended Data Fig. 10 The capillary-force-driven rolling-up process used to produce roll-up vdW superlattices.
a, b, Optical microscopy images of SnS2/WSe2 roll-up obtained with ethanolâ€“water (E/W) (a) and ethanolâ€“waterâ€“ammonia (E/W/A) (b) solutions. Scale bars, 20 Î¼m. c, Statistical distribution of the yield of roll-ups. FR, full roll-ups (for example, b); PR, partial roll-ups (for example, a); NR, no roll-ups.
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