Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Widespread potential loss of streamflow into underlying aquifers across the USA


Most rivers exchange water with surrounding aquifers1,2. Where groundwater levels lie below nearby streams, streamwater can infiltrate through the streambed, reducing streamflow and recharging the aquifer3. These ‘losing’ streams have important implications for water availability, riparian ecosystems and environmental flows4,5,6,7,8,9,10, but the prevalence of losing streams remains poorly constrained by continent-wide in situ observations. Here we analyse water levels in 4.2 million wells across the contiguous USA and show that nearly two-thirds (64 per cent) of them lie below nearby stream surfaces, implying that these streamwaters will seep into the subsurface if it is sufficiently permeable. A lack of adequate permeability data prevents us from quantifying the magnitudes of these subsurface flows, but our analysis nonetheless demonstrates widespread potential for streamwater losses into underlying aquifers. These potentially losing rivers are more common in drier climates, flatter landscapes and regions with extensive groundwater pumping. Our results thus imply that climatic factors, geological conditions and historic groundwater pumping jointly contribute to the widespread risk of streams losing flow into surrounding aquifers instead of gaining flow from them. Recent modelling studies10 have suggested that losing streams could become common in future decades, but our direct observations show that many rivers across the USA are already potentially losing flow, highlighting the importance of coordinating groundwater and surface water policy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Local-scale studies of stream–aquifer exchange.
Fig. 2: Comparison of well-water and stream-surface elevations.
Fig. 3: Prevalence of potentially losing and gaining rivers across the USA.
Fig. 4: The prevalence of losing conditions in relation to climatic aridity, topographic slope and groundwater withdrawals.

Data availability

Well water-level datasets are available from state and sub-state agencies. Some states only share their groundwater-well data through requests to their various agencies or through public records requests. We have permission to share state-wide groundwater well construction data for California, Colorado, Idaho, Kentucky, Mississippi, Montana, Nevada, Oklahoma, South Carolina, Texas, Utah and Washington, and we share these data in the Supplementary Information. Websites for direct download and contact information for requesting access to the original well-completion report data for all states are detailed in refs. 26,27,28 and summarized in Supplementary Table 5. Monitoring well water-level data are available from the US Geological Survey ( and California’s GAMA Program ( We have included tables that were used to generate the spatial data shown in Figs. 3 and 4 (see Source data).

Code availability

Requests for code linked to the described geospatial analyses can be directed to H.S. (


  1. 1.

    Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource US Geological Survey Circular 1139, (USGS, 1998).

  2. 2.

    Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).

    ADS  CAS  Google Scholar 

  3. 3.

    Barlow, P. M. & Leake, S. A. Streamflow Depletion by Wells: Understanding and Managing the Effects of Groundwater Pumping on Streamflow US Geological Survey Circular 1376, (USGS, 2012).

  4. 4.

    Tabidian, M. A. & Pederson, D. T. Impact of irrigation wells on baseflow of the Big Blue River, Nebraska. Water Resour. Bull. 31, 295–306 (1995).

    Google Scholar 

  5. 5.

    Fleckenstein, J. H., Anderson, M., Fogg, G. E. & Mount, J. Managing surface water-groundwater to restore fall flows in the Cosumnes River. J. Water Resour. Plan. Manage. 130, 301–310 (2004).

    Google Scholar 

  6. 6.

    Fleckenstein, J. H., Niswonger, R. G. & Fogg, G. E. River–aquifer interactions, geologic heterogeneity, and low flow management. Ground Water 44, 837–852 (2006).

    CAS  Google Scholar 

  7. 7.

    Boulton, A. J. & Hancock, P. J. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 54, 133–144 (2006).

    Google Scholar 

  8. 8.

    Arthington, A. H. et al. The Brisbane declaration and global action agenda on environmental flows. Front. Environ. Sci. 6, 45 (2018).

  9. 9.

    Perkin, J. S. et al. Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proc. Natl Acad. Sci. USA 114, 7373–7378 (2017).

    CAS  Google Scholar 

  10. 10.

    de Graaf, I. E., Gleeson, T., van Beek, L. R., Sutanudjaja, E. H. & Bierkens, M. F. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    ADS  Google Scholar 

  11. 11.

    Healy, R. W. Estimating Groundwater Recharge (Cambridge Univ. Press, 2010).

  12. 12.

    Boyer, E. W., Hornberger, G. M., Bencala, K. E. & McKnight, D. M. Response characteristics of DOC flushing in an alpine catchment. Hydrol. Processes 11, 1635–1647 (1997).

    ADS  Google Scholar 

  13. 13.

    Valett, H. M., Fisher, S. G., Grimm, N. B. & Camill, P. Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology 75, 548–560 (1994).

    Google Scholar 

  14. 14.

    Devauchelle, O., Petroff, A. P., Seybold, H. F. & Rothman, D. H. Ramification of stream networks. Proc. Natl Acad. Sci. USA 109, 20832–20836 (2012).

    ADS  CAS  Google Scholar 

  15. 15.

    LaSage, D. M., Fryar, A. E., Mukherjee, A., Sturchio, N. C. & Heraty, L. J. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream. J. Hydrol. 360, 265–280 (2008).

    ADS  CAS  Google Scholar 

  16. 16.

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    ADS  CAS  Google Scholar 

  17. 17.

    Horgby, Å. et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains. Nat. Commun. 10, 4888 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    ADS  CAS  Google Scholar 

  19. 19.

    Winter, T. C. The role of ground water in generating streamflow in headwater areas and in maintaining base flow. J. Am. Water Resour. Assoc. 43, 15–25 (2007).

    ADS  Google Scholar 

  20. 20.

    Nelson, R. L. Assessing local planning to control groundwater depletion: California as a microcosm of global issues. Wat. Resour. Res. 48, W01502 (2012).

    ADS  Google Scholar 

  21. 21.

    Rhodes, K. A. et al. The importance of bank storage in supplying baseflow to rivers flowing through compartmentalized, alluvial aquifers. Wat. Resour. Res. 53, 10539–10557 (2017).

    ADS  Google Scholar 

  22. 22.

    Brunner, P., Cook, P. G. & Simmons, C. T. Disconnected surface water and groundwater: from theory to practice. Ground Water 49, 460–467 (2011).

    CAS  Google Scholar 

  23. 23.

    Winter, T. C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 7, 28–45 (1999).

    ADS  Google Scholar 

  24. 24.

    Herbert, C. & Döll, P. Global assessment of current and future groundwater stress with a focus on transboundary aquifers. Wat. Resour. Res. 55, 4760–4784 (2019).

    ADS  Google Scholar 

  25. 25.

    Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Perrone, D. & Jasechko, S. Dry groundwater wells in the western United States. Environ. Res. Lett. 12, 104002 (2017).

    ADS  Google Scholar 

  27. 27.

    Perrone, D. & Jasechko, S. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2, 773–782 (2019).

    Google Scholar 

  28. 28.

    Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    McKay, L. et al. National Hydrography Dataset NHDPlus Version 2: User Guide (Horizon Systems, 2012).

  30. 30.

    United States Geological Survey National Elevation Dataset (NED) (USGS, accessed February 2014).

  31. 31.

    Wieczorek, M. E., Jackson, S. E. & Schwarz, G. E. Select Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Network Routed Upstream Watersheds for the Conterminous United States USGS data release v. 2.0, (USGS, 2019).

  32. 32.

    Dieter, C. A. et al. Estimated Use of Water in the United States in 2015 US Geological Survey Circular 1441, (USGS, 2018).

  33. 33.

    Zomer, R. J., Trabucco, A., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Google Scholar 

  34. 34.

    Iman, R. L. & Conover, W. J. The use of the rank transform in regression. Technometrics 21, 499–509 (1979).

    Google Scholar 

  35. 35.

    Perrone, D., Hornberger, G., van Vliet, O. & van der Velde, M. A review of the United States’ past and projected water use. J. Am. Water Resour. Assoc. 51, 1183–1191 (2015).

    ADS  Google Scholar 

  36. 36.

    Nelson, R. L. & Perrone, D. Local groundwater withdrawal permitting laws in the south‐western US: California in comparative context. Ground Water 54, 747–753 (2016).

    CAS  Google Scholar 

  37. 37.

    Deines, J. M., Kendall, A. D., Butler, J. J. & Hyndman, D. W. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains aquifer. Environ. Res. Lett. 14, 044014 (2019).

    ADS  Google Scholar 

  38. 38.

    Criss, R. E. & Davisson, M. L. Isotopic imaging of surface water/groundwater interactions, Sacramento Valley, California. J. Hydrol. 178, 205–222 (1996).

    ADS  CAS  Google Scholar 

  39. 39.

    Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    ADS  Google Scholar 

  40. 40.

    Nelson, R. & Quevauviller, P. Groundwater law. In Integrated Groundwater Management (eds Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D. & Ross, A.) 173–196 (Springer, 2016).

  41. 41.

    Kocis, T. N. & Dahlke, H. E. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California. Environ. Res. Lett. 12, 084009 (2017).

    ADS  Google Scholar 

  42. 42.

    Russo, T. A., Fisher, A. T. & Lockwood, B. S. Assessment of managed aquifer recharge site suitability using a GIS and modeling. Ground Water 53, 389–400 (2015).

    CAS  Google Scholar 

  43. 43.

    McManamay, R. A. & DeRolph, C. R. A stream classification system for the conterminous United States. Sci. Data 6, 190017 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zimmer, M. A. & McGlynn, B. L. Bidirectional stream–groundwater flow in response to ephemeral and intermittent streamflow and groundwater seasonality. Hydrol. Processes 31, 3871–3880 (2017).

    ADS  Google Scholar 

  45. 45.

    Lamontagne, S., Leaney, F. W. & Herczeg, A. L. Groundwater–surface water interactions in a large semi‐arid floodplain: implications for salinity management. Hydrol. Processes 19, 3063–3080 (2005).

    ADS  CAS  Google Scholar 

  46. 46.

    Simonds, F. W. & Sinclair, K. A. Surface Water–Ground Water Interactions Along the Lower Dungeness River and Vertical Hydraulic Conductivity of Streambed Sediments, Clallam County, Washington, September 1999-July 2001 Washington State Department of Ecology Report 02-03-027, (USGS, 2002).

  47. 47.

    Division of Water Resources Upper Arkansas River: 2008 Field Analysis Summary. Kansas Department of Agriculture Report (Kansas Department of Agriculture, 2008).

  48. 48.

    Becker, M. W., Georgian, T., Ambrose, H., Siniscalchi, J. & Fredrick, K. Estimating flow and flux of ground water discharge using water temperature and velocity. J. Hydrol. 296, 221–233 (2004).

    ADS  Google Scholar 

  49. 49.

    Ruehl, C. et al. Differential gauging and tracer tests resolve seepage fluxes in a strongly-losing stream. J. Hydrol. 330, 235–248 (2006).

    ADS  Google Scholar 

  50. 50.

    Hatch, C. E., Fisher, A. T., Ruehl, C. R. & Stemler, G. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J. Hydrol. 389, 276–288 (2010).

    ADS  Google Scholar 

  51. 51.

    LaSage, D. M., Sexton, J. L., Mukherjee, A., Fryar, A. E. & Greb, S. F. Groundwater discharge along a channelized Coastal Plain stream. J. Hydrol. 360, 252–264 (2008).

    ADS  Google Scholar 

  52. 52.

    Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 946–949 (2016).

    ADS  Google Scholar 

  53. 53.

    Jakubowski, R. T. Coupled Stream–Aquifer Exchanges Along a Losing Reach of the Rio Grande in Central New Mexico. PhD dissertation, New Mexico Institute of Mining and Technology (2006).

  54. 54.

    Constantz, J. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Wat. Resour. Res. 34, 1609–1615 (1998).

    ADS  Google Scholar 

  55. 55.

    Harvey, J. W. & Bencala, K. E. The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Wat. Resour. Res. 29, 89–98 (1993).

    ADS  Google Scholar 

  56. 56.

    Harner, M. J. & Stanford, J. A. Differences in cottonwood growth between a losing and a gaining reach of an alluvial floodplain. Ecology 84, 1453–1458 (2003).

    Google Scholar 

  57. 57.

    Lowry, C. S., Walker, J. F., Hunt, R. J. & Anderson, M. P. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Wat. Resour. Res. 43, W10408 (2007).

    ADS  Google Scholar 

  58. 58.

    Sinclair, K. A. & Kardouni, J. D. Surface Water/Groundwater Interactions and Near-Stream Groundwater Quality along Burnt Bridge Creek, Clark County Publication No. 12-03-003, (Washington State Department of Ecology, 2012).

  59. 59.

    Harte, P. T. & Kiah, R. G. Measured river leakages using conventional streamflow techniques: the case of Souhegan River, New Hampshire, USA. Hydrogeol. J. 17, 409–424 (2009).

    ADS  Google Scholar 

  60. 60.

    Fuchs, E. H., King, J. P. & Carroll, K. C. Quantifying disconnection of groundwater from managed‐ephemeral surface water during drought and conjunctive agricultural use. Wat. Resour. Res. 55, 5871–5890 (2019).

    ADS  Google Scholar 

  61. 61.

    McDonald, A. K., Sheng, Z., Hart, C. R. & Wilcox, B. P. Studies of a regulated dryland river: surface–groundwater interactions. Hydrol. Processes 27, 1819–1828 (2013).

    ADS  Google Scholar 

  62. 62.

    Dogwiler, T., Wicks, C. M. & Jenzen, E. An assessment of the applicability of the heat pulse method toward the determination of infiltration rates in karst losing-stream reaches. J. Caves Karst Stud. 69, 237–242 (2007).

    Google Scholar 

  63. 63.

    O’Driscoll, M. A. & DeWalle, D. R. Stream–air temperature relations to classify stream–ground water interactions in a karst setting, central Pennsylvania, USA. J. Hydrol. 329, 140–153 (2006).

    ADS  Google Scholar 

  64. 64.

    Hadlock, G. L., Lachmar, T. E. & McCalpin, J. P. The relationship between the water table and the surface flow of a losing stream, lower Medano Creek, Great Sand Dunes National Monument, Colorado. Environ. Geol. 30, 10–16 (1997).

    Google Scholar 

  65. 65.

    Treese, S., Meixner, T. & Hogan, J. F. Clogging of an effluent dominated semiarid river: a conceptual model of stream–aquifer interactions. J. Am. Water Resour. Assoc. 45, 1047–1062 (2009).

    ADS  CAS  Google Scholar 

  66. 66.

    Chen, X. Hydrologic connections of a stream–aquifer–vegetation zone in south-central Platte River valley, Nebraska. J. Hydrol. 333, 554–568 (2007).

    ADS  Google Scholar 

  67. 67.

    Genereux, D. P., Leahy, S., Mitasova, H., Kennedy, C. D. & Corbett, D. R. Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J. Hydrol. 358, 332–353 (2008).

    ADS  Google Scholar 

  68. 68.

    Chen, X., Dong, W., Ou, G., Wang, Z. & Liu, C. Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns. Hydrol. Earth Syst. Sci. 17, 2569–2579 (2013).

    ADS  Google Scholar 

  69. 69.

    Dong, W., Chen, X., Wang, Z., Ou, G. & Liu, C. Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. J. Hydrol. 450/451, 9–16 (2012).

    ADS  Google Scholar 

  70. 70.

    Gestring, S. L. The Interaction of the Clark Fork River and Hellgate Valley Aquifer near Milltown, Montana. MSc thesis, Univ. of Montana (1994).

  71. 71.

    Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E. & Wondzell, S. M. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana. United States. Wat. Resour. Res. 45, W11427 (2009).

    ADS  Google Scholar 

  72. 72.

    Briggs, M. A., Lautz, L. K. & McKenzie, J. M. A comparison of fibre‐optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol. Processes 26, 1277–1290 (2012).

    ADS  Google Scholar 

  73. 73.

    Lautz, L. K. & Ribaudo, R. E. Scaling up point-in-space heat tracing of seepage flux using bed temperatures as a quantitative proxy. Hydrogeol. J. 20, 1223–1238 (2012).

    ADS  Google Scholar 

  74. 74.

    Burnett, W. C., Peterson, R. N., Santos, I. R. & Hicks, R. W. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J. Hydrol. 380, 298–304 (2010).

    ADS  CAS  Google Scholar 

  75. 75.

    Rosenberry, D. O., Briggs, M. A., Delin, G. & Hare, D. K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand‐bed stream. Wat. Resour. Res. 52, 4486–4503 (2016).

    ADS  Google Scholar 

  76. 76.

    Malzone, J. M. & Lowry, C. S. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession. Ground Water 53, 217–226 (2015).

    CAS  Google Scholar 

  77. 77.

    Malzone, J. M., Anseeuw, S. K., Lowry, C. S. & Allen‐King, R. Temporal hyporheic zone response to water table fluctuations. Ground Water 54, 274–285 (2016).

    CAS  Google Scholar 

  78. 78.

    Jones, C. B. GroundwaterSurface Water Interactions near Mosier, Oregon. MSc thesis, Univ. Portland (2016).

  79. 79.

    Gannett, M. W., Lite, K. E., La Marche, J. L., Fisher, B. J. & Polette, D. J. Ground-water Hydrology of the Upper Klamath Basin, Oregon and California USGS Scientific Investigations Report 2007–5050 (USGS, 2007).

  80. 80.

    Gryczkowski, L. Surface Water and Groundwater Interactions in the Walla Walla River, Northeast Oregon, USA: A Multi-Method Field-Based Approach. PhD dissertation, Oregon State Univ. (2015).

  81. 81.

    Silliman, S. E. & Booth, D. F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol. 146, 131–148 (1993).

    ADS  Google Scholar 

  82. 82.

    Domagalski, J. L. et al. Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA. Hydrogeol. J. 16, 675–690 (2008).

    ADS  CAS  Google Scholar 

  83. 83.

    Maurer, D. K., Berger, D. L., Tumbusch, M. L. & Johnson, M. J. Rates Of Evapotranspiration, Recharge From Precipitation Beneath Selected Areas Of Native Vegetation, And Streamflow Gain And Loss In Carson Valley, Douglas County, Nevada, And Alpine County, California USGS Scientific Investigations Report 2005–5288 (USGS, 2006).

  84. 84.

    Nelson, K. Groundwater Flow Model of the Santa Cruz Active Management Area Along The Effluent-Dominated Santa Cruz River, Santa Cruz and Pima Counties, Arizona Modeling Report No. 14 (Arizona Department of Water Resources, 2007).

  85. 85.

    Jasechko, S. & Perrone, D. Hydraulic fracturing near domestic groundwater wells. Proc. Natl Acad. Sci. USA 114, 13138–13143 (2017).

    ADS  CAS  Google Scholar 

  86. 86.

    Hart, R. M., Clark, B. R. & Bolyard, S. E. Digital Surfaces And Thicknesses Of Selected Hydrogeologic Units within the Mississippi Embayment Regional Aquifer Study (MERAS) USGS Scientific Investigations Report 2008-5098 (USGS, 2008).

  87. 87.

    Pope, J. P., Andreasen, D. C., McFarland, E. R. & Watt, M. K. Digital Elevations and Extents of Regional Hydrogeologic Units in the Northern Atlantic Coastal Plain Aquifer System from Long Island, New York, to North Carolina (Ver. 1.1, December 2020) US Geological Survey Data Series 996, (USGS, 2016).

  88. 88.

    Konikow, L. F. Groundwater Depletion in the United States (1900−2008) USGS Scientific Investigations Report 2013−5079 (USGS, 2013).

  89. 89.

    Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    ADS  CAS  Google Scholar 

Download references

Author information




S.J., H.S., D.P., Y.F. and J.W.K. devised methods, discussed results, and contributed to writing the manuscript. S.J., H.S., D.P. and J.W.K. completed geospatial analyses.

Corresponding author

Correspondence to Scott Jasechko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jan Fleckenstein, Michael Gooseff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–25, Supplementary Tables 1–16, and Supplementary References.

Peer Review File

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jasechko, S., Seybold, H., Perrone, D. et al. Widespread potential loss of streamflow into underlying aquifers across the USA. Nature 591, 391–395 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing