Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Localization of lattice dynamics in low-angle twisted bilayer graphene


Twisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain1,2,3. The resulting superlattice modulates the vibrational3,4 and electronic5,6 structures within the material, leading to changes in the behaviour of electron–phonon coupling7,8 and to the observation of strong correlations and superconductivity9. However, accessing these modulations and understanding the related effects are challenging, because the modulations are too small for experimental techniques to accurately resolve the relevant energy levels and too large for theoretical models to properly describe the localized effects. Here we report hyperspectral optical images, generated by a nano-Raman spectroscope10, of the crystal superlattice in reconstructed (low-angle) twisted bilayer graphene. Observations of the crystallographic structure with visible light are made possible by the nano-Raman technique, which reveals the localization of lattice dynamics, with the presence of strain solitons and topological points1 causing detectable spectral variations. The results are rationalized by an atomistic model that enables evaluation of the local density of the electronic and vibrational states of the superlattice. This evaluation highlights the relevance of solitons and topological points for the vibrational and electronic properties of the structures, particularly for small twist angles. Our results are an important step towards understanding phonon-related effects at atomic and nanometric scales, such as Jahn–Teller effects11 and electronic Cooper pairing12,13,14, and may help to improve device characterization15 in the context of the rapidly developing field of twistronics16.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Nano-Raman spectral imaging of a crystallographic superlattice in rTBG.
Fig. 2: Phonon structure and the nano-Raman spectral signature.
Fig. 3: Nano-Raman spectral signatures (upper panels) and electronic structure (lower panels).
Fig. 4: Micro-Raman spectral signature for TBG at different twist angles.

Data availability

The experimental data related to this work, including the raw and processed data, are available at The data related to the theoretical work are available on request to the corresponding authors.


  1. 1.

    Jonathan, S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  Google Scholar 

  2. 2.

    Lin, X., Liu, D. & Tománek, D. Shear instability in twisted bilayer graphene. Phys. Rev. B 98, 195432 (2018).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Cocemasov, A. I., Nika, D. L. & Balandin, A. A. Phonons in twisted bilayer graphene. Phys. Rev. B 88, 035428 (2013).

    ADS  Article  CAS  Google Scholar 

  6. 6.

    Lamparski, M., Van Troeye, B. & Meunier, V. Soliton signature in the phonon spectrum of twisted bilayer graphene. 2D Mater. 7, 025050 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 175–176, 3–12 (2013).

    ADS  Article  CAS  Google Scholar 

  8. 8.

    Eliel, G. S. N. et al. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  10. 10.

    Shao, F. & Zenobi, R. Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal. Bioanal. Chem. 411, 37–61 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Angeli, M., Tosatti, E. & Fabrizio, M. Valley Jahn-Teller effect in twisted bilayer graphene. Phys. Rev. X 9, 041010 (2019).

    CAS  Google Scholar 

  12. 12.

    Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Lian, B., Wang, Z. & Bernevig, A. B. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    ADS  Article  CAS  Google Scholar 

  17. 17.

    Yoshimori, A. & Kitano, Y. Theory of the lattice vibration of graphite. J. Phys. Soc. Jpn 11, 352–361 (1956).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Gargiulo, F. & Yazyev, O. V. Structural and electronic transformation in low-angle twisted bilayer graphene. 2D Mater. 5, 015019 (2017).

    Article  CAS  Google Scholar 

  19. 19.

    Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Vasconcelos, T. L. et al. Plasmon-tunable tip pyramids: monopole nanoantennas for near-field scanning optical microscopy. Adv. Opt. Mater. 6, 1800528 (2018).

    Article  CAS  Google Scholar 

  23. 23.

    Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Liang, L., Puretzky, A. A., Sumpter, B. G. & Meunier, V. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale 9, 15340–15355 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Thomsen, C. & Reich, S. Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Zabel, J. et al. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 12, 617–621 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Neumann, C. et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 6, 8429 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Lazzeri, M. & Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    .Charlier, J.-C., Eklund, P. C., Zhu, J. & Ferrari, A. C. in Carbon Nanotubes (eds Jorio, A. et. al) 673–709 (Springer, 2008).

  34. 34.

    Das, A. et al. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

    ADS  Article  CAS  Google Scholar 

  35. 35.

    Ribeiro, H. B. et al. Origin of van Hove singularities in twisted bilayer graphene. Carbon 90, 138–145 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys. Rev. B 73, 155426 (2006).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Efthimiopoulos, I., Mayanna, S., Stavrou, E., Torode, A. & Wang, Y. Extracting the anharmonic properties of the G-band in graphene nanoplatelets. J. Phys. Chem. C 124, 4835–4842 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Serlin, M. et al. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Rabelo, C., Miranda, H., Vasconcelos, T. L., Cancado, L. G. & Jorio, A. Tip-enhanced Raman spectroscopy of graphene. In 4th Int. Symp. Instrumentation Systems, Circuits and Transducers (INSCIT) 1–6 (IEEE, 2019).

  42. 42.

    Miranda, H. et al. Impact of substrate on tip-enhanced Raman spectroscopy: a comparison between field-distribution simulations and graphene measurements. Phys. Rev. Res. 2, 023408 (2020).

    CAS  Article  Google Scholar 

  43. 43.

    Miranda, H. et al. Optical properties of plasmon-tunable tip pyramids for tip-enhanced raman spectroscopy. Phys. Status Solidi 14, 2000212 (2020).

    CAS  Article  Google Scholar 

  44. 44.

    Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


This work was supported by CNPq (302775/2018-8 and INCT/Nanomaterials de Carbono), CAPES (RELAII and 88881.198744/2018-01) and FAPEMIG, Brazil. V.-H.N. and J.-C.C. acknowledge financial support from the Fédération Wallonie-Bruxelles through the ARC on 3D nano-architecturing of 2D crystals (16/21-077), from the European Union’s Horizon 2020 Research Project and Innovation Program — Graphene Flagship Core3 (881603), from the Flag-Era JTC projects ‘MECHANIC’ (R.50.07.18) and ‘TATTOOS’ (R.8010.19), from the Belgium FNRS through the research projects T.1077.15 and T.0051.18, and from the Francqui-Stichting Foundation. V.M. and M.L. acknowledge support from NY State Empire State Development’s Division of Science, Technology and Innovation (NYSTAR).

Author information




Sample preparation: A.C.G., D.M., F.C.S., E.G.S.N., J.S.L., L.C.C., R.N. and V.O.; K.W. and T.T. provided hBN crystals. Nano-Raman measurements: A.C.G., C.R. and T.L.V. Micro-Raman measurements: A.C.G., E.G.S.N., J.S.L. and R.N. Scanning probe microscopy measurements: D.A.A.O. and G.M.-R. Phonon structure computation: B.v.T., M.L. and V.M. Electronic structure computation: D.P., V.-H.N. and J.-C.C. Data analysis: A.J., A.C.G., C.R., E.G.S.N. and J.L.C. Project idealization and guidance: A.J., G.M.-R., L.G.C., L.C.C. and V.M. Paper writing: A.J., A.C.G. and V.M. Some authors contributed to parts of the text and figures. All authors read and agreed on the final version of the manuscript.

Corresponding authors

Correspondence to Vincent Meunier or Ado Jorio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Ludger Wirtz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparison between micro- and nano-Raman spectra in the rTBG sample.

This figure is a reproduction of Fig. 1c, but with the intensity of the micro-Raman spectrum multiplied by 26 to better visualize and compare the details of the two spectra. The enhancement of the hBN substrate peak is considerably lower, owing to the presence of the graphene sample between the tip and the substrate.

Extended Data Fig. 2 Representative spectral profiles and images for two other rTBG samples.

a, c, The spectral Raman profiles evidence different frequency values for the \({G}_{{\rm{r}}}^{-}\) and \({G}_{{\rm{r}}}^{+}\) peaks observed in two different rTBG samples (black arrows link the profiles to the corresponding images in b and d). The vertical lines indicate the central frequencies for the observed \({G}_{{\rm{r}}}^{-}\), G and \({G}_{{\rm{r}}}^{+}\) peaks. b, d, The spectral images are based on the G′-band intensities (colour scale). The arrow in d indicates the where the specrum in c was taken. In Fig. 2f (rTBG with θ = 0.09°), the peaks are observed at \({\omega }_{{G}_{{\rm{r}}}^{-}}=1,522\,{{\rm{cm}}}^{-1}\) and \({\omega }_{{G}_{{\rm{r}}}^{+}}=1,612\,{{\rm{cm}}}^{-1}\). The frequency difference between the theoretically predicted \({G}_{{\rm{r}}}^{-}\) and \({G}_{{\rm{r}}}^{+}\) peaks is \(\Delta {\omega }_{{G}_{{\rm{r}}}^{\pm }}=45\,{{\rm{cm}}}^{-1}\) (for θ = 0.987°; already reaching the limit of our computational capability). For the experimentally observed \({G}_{{\rm{r}}}^{-}\) and \({G}_{{\rm{r}}}^{+}\) peaks for θ = 0.09°, it is \(\Delta {\omega }_{{G}_{{\rm{r}}}^{\pm }}=90\,{{\rm{cm}}}^{-1}\). Our ability to experimentally define the θ dependence of the splitting is also limited, by the TERS resolution. We cannot properly image a moiré pattern smaller than 40 nm (twice the TERS resolution), limiting the rTBG samples that we can image to those with θ < 0.3°. The \(\Delta {\omega }_{{G}_{{\rm{r}}}^{\pm }}\) splitting is predicted to increase with decreasing twist angle6, consistent with experimental observations: for LM ≈ 160 nm (θ ≈ 0.09°), we observed \({\omega }_{{G}_{{\rm{r}}}^{-}}=1,522\,{{\rm{cm}}}^{-1}\) and \({\omega }_{{G}_{{\rm{r}}}^{+}}=1,612\,{{\rm{cm}}}^{-1}\) (\(\Delta {\omega }_{{G}_{{\rm{r}}}^{\pm }}=90\,{{\rm{cm}}}^{-1}\)); for LM ≈ 210 nm (θ ≈ 0.07°), we observed \({\omega }_{{G}_{{\rm{r}}}^{-}}=1,517\,{{\rm{cm}}}^{-1}\) and \({\omega }_{{G}_{{\rm{r}}}^{+}}=1,616\,{{\rm{cm}}}^{-1}\) (\(\Delta {\omega }_{{G}_{{\rm{r}}}^{\pm }}=99\,{{\rm{cm}}}^{-1}\)); for LM > 1,000 nm (θ < 0.01), \({\omega }_{{G}_{{\rm{r}}}^{-}}\) was not observed, but \({\omega }_{{G}_{{\rm{r}}}^{+}}=1,619\,{{\rm{cm}}}^{-1}\) follows the trend.

Extended Data Fig. 3 Correlation between G- and G′-band frequencies and FWHMs.

a, b, The frequencies (a) and FWHMs (b) are shown for the data displayed in Fig. 1d. The G′ spectra were fitted using four Lorentzians, as per ref. 26. The results shown here are for the most intense G′ feature (named ‘L02’ in ref. 26). The inset in a shows the behaviour of the four peaks.

Extended Data Fig. 4 Correlation between G- and G′-band frequencies and FWHMs.

a, b, The frequencies (a) and FWHMs (b) are shown for the data displayed in Fig. 4. The twist angle for each point is labelled. The red curved arrow in b indicates a maximum in FWHM observed near the magic angle.

Extended Data Fig. 5 Schematics of the sample preparation procedure.

a, We cover the newly developed PDMS tear-and-stack pyramid stamp (TPS) with a polycarbonate (PC) sheet and align the TPS edge with the middle of a graphene flake. b, Next, we make contact between the TPS and graphene, followed by a temperature ramp from 70 °C to 80 °C. c, We then wait for the system to cool down, reaching a temperature of 70 °C, similarly to the pick-up method46, removing a piece of the graphene flake. d, e, We then rotate the base (d) and stack the two parts of graphene together, forming the TBG (e). f, We do the previous temperature ramp and cool-down procedure again to remove the remaining graphene piece. g, Next, we put the TBG in contact with a flat and clean hBN flake at room temperature. h, The van der Waals interactions between them is strong enough for the hBN to pull out the TBG from the TPS.

Extended Data Fig. 6 TERS imaging of nine different moiré structures from rTBG.

ai, TERS images from various moiré structural formations based on the G′-band intensity (left) and the simultaneously obtained AFM images (right). The solitonic structures are observable only in the TERS images (darker blue lines); they are absent in the AFM images. The contrast discontinuities in b and f are due to the realignment of the tip with the laser during the scan.

Extended Data Fig. 7 Multi-technique structural characterization of rTBG.

a, b, TERS (a) and sMIM (b) images of the same rTBG region.

Supplementary information

Supplementary Information

This file contains brings more details about the theory utilized in our work, including Raman intensity calculations, the lattice strain in the relaxed structure and the electronic structure, including (joint) local density of states analysis.

Supplementary Figures

This document is provided to the reader under the “data availability” directive. The tables summarize the files on a per-figure basis.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gadelha, A.C., Ohlberg, D.A.A., Rabelo, C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing