Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of gravitational coupling between millimetre-sized masses


Gravity is the weakest of all known fundamental forces and poses some of the most important open questions to modern physics: it remains resistant to unification within the standard model of physics and its underlying concepts appear to be fundamentally disconnected from quantum theory1,2,3,4. Testing gravity at all scales is therefore an important experimental endeavour5,6,7. So far, these tests have mainly involved macroscopic masses at the kilogram scale and beyond8. Here we show gravitational coupling between two gold spheres of 1 millimetre radius, thereby entering the regime of sub-100-milligram sources of gravity. Periodic modulation of the position of the source mass allows us to perform a spatial mapping of the gravitational force. Both linear and quadratic coupling are observed as a consequence of the nonlinearity of the gravitational potential. Our results extend the parameter space of gravity measurements to small, single source masses and low gravitational field strengths. Further improvements to our methodology will enable the isolation of gravity as a coupling force for objects below the Planck mass. This work opens the way to the unexplored frontier of microscopic source masses, which will enable studies of fundamental interactions9,10,11 and provide a path towards exploring the quantum nature of gravity12,13,14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Spectrum of a single measurement run.
Fig. 3: Spatial mapping of the gravitational force.
Fig. 4: Collection of measurement runs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Unruh, W. G. in Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt (ed. Christensen, S. M.) 234–242 (Adam Hilger Limited, 1984).

  2. Preskill, J. Do black holes destroy information. In Proc. of the International Symposium on Black Holes, Membranes, Wormholes and Superstrings (eds Kalara S. & Nanopoulos, D. V.) 1992 (World Scientific, 1993).

  3. Greenberger, D. M. The disconnect between quantum mechanics and gravity. Preprint at (2010).

  4. Penrose, R. On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44, 557–575 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 3 (2014).

    Article  ADS  MATH  Google Scholar 

  6. Adelberger, E. New tests of Einstein’s equivalence principle and Newton’s inverse-square law. Class. Quantum Gravity 18, 2397 (2001).

    Article  ADS  MATH  Google Scholar 

  7. Hossenfelder, S. Experimental search for quantum gravity. Preprint at (2010).

  8. Gillies, G. T. & Unnikrishnan, C. S. The attracting masses in measurements of G: an overview of physical characteristics and performance. Philos. Trans. R. Soc. A 372, 20140022 (2014).

    Article  ADS  Google Scholar 

  9. Feldman, B. & Nelson, A. E. New regions for a chameleon to hide. J. High Energy Phys. 2006, 002 (2006).

    Article  MathSciNet  Google Scholar 

  10. Burrage, C., Copeland, E. J. & Hinds, E. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 2015, 042 (2015).

    Article  Google Scholar 

  11. Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. DeWitt, C. M. & Rickles, D. (eds) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (Max Planck Research Library for the History and Development of Knowledge, 2011).

  13. Bose, S. et al. Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  14. Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Belenchia, A. et al. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D 98, 126009 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Ransom, S. M. et al. A millisecond pulsar in a stellar triple system. Nature 505, 520–524 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  18. Akiyama, K. et al. First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Asenbaum, P. et al. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett. 118, 183602 (2017).

    Article  ADS  PubMed  Google Scholar 

  21. Rosi, G. et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 8, 15529 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gundlach, J. & Merkowitz, S. Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett. 85, 2869–2872 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Quinn, T., Parks, H., Speake, C. & Davis, R. Improved determination of G using two methods. Phys. Rev. Lett. 111, 101102 (2013).

    Article  ADS  PubMed  Google Scholar 

  24. Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J. & Kapitulnik, A. Improved constraints on non-Newtonian forces at 10 microns. Phys. Rev. D 78, 022002 (2008).

    Article  ADS  Google Scholar 

  26. Tan, W.-h. et al. Improvement for testing the gravitational inverse-square law at the submillimeter range. Phys. Rev. Lett. 124, 051301 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel, B. R. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Colella, R., Overhauser, A. & Werner, S. Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Al Balushi, A., Cong, W. & Mann, R. B. Optomechanical quantum Cavendish experiment. Phys. Rev. A 98, 043811 (2018).

    Article  ADS  CAS  Google Scholar 

  30. Hoskins, J. K., Newman, R. D., Spero, R. & Schultz, J. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Phys. Rev. D 32, 3084–3095 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Mitrofanov, V. P. & Ponomareva, O. I. Experimental test of gravitation at small distances. Sov. Phys. JETP 67, 1963 (1988).

    Google Scholar 

  32. Schmöle, J., Dragosits, M., Hepach, H. & Aspelmeyer, M. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses. Class. Quantum Gravity 33, 125031 (2016).

    Article  ADS  Google Scholar 

  33. Shimoda, T. & Ando, M. Nonlinear vibration transfer in torsion pendulums. Class. Quantum Gravity 36, 125001 (2019).

    Article  ADS  Google Scholar 

  34. Ugolini, D., Funk, Q. & Amen, T. Discharging fused silica test masses with ionized nitrogen. Rev. Sci. Instrum. 82, 046108 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Canaguier-Durand, A. et al. Casimir interaction between a dielectric nanosphere and a metallic plane. Phys. Rev. A 83, 032508 (2011).

    Article  ADS  Google Scholar 

  36. Komori, K. et al. Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum. Phys. Rev. A 101, 011802 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Prat-Camps, J., Teo, C., Rusconi, C. C., Wieczorek, W. & Romero-Isart, O. Ultrasensitive inertial and force sensors with diamagnetically levitated magnets. Phys. Rev. Appl. 8, 034002 (2017).

    Article  ADS  Google Scholar 

  38. Timberlake, C., Gasbarri, G., Vinante, A., Setter, A. & Ulbricht, H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115, 224101 (2019).

    Article  ADS  Google Scholar 

  39. Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).

    Article  ADS  CAS  Google Scholar 

  40. Lewandowski, C. W., Knowles, T. D., Etienne, Z. B. & D’Urso, B. High sensitivity accelerometry with a feedback-cooled magnetically levitated microsphere. Phys. Rev. Appl. 15, 014050 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Kawasaki, A. et al. High sensitivity, levitated microsphere apparatus for short-distance force measurements. Rev. Sci. Instrum. 91, 083201 (2020).

    Article  ADS  PubMed  Google Scholar 

  42. Liu, Y., Mummery, J. & Sillanpää, M. A. Prospects for observing gravitational forces between nonclassical mechanical oscillators. Preprint at (2020).

  43. Obukhov, Y. N. & Puetzfeld, D. in Fundamental Theories of Physics 87–130 (Springer, 2019).

  44. Speake, C. & Quinn, T. The search for Newton’s constant. Phys. Today 67, 27–33 (2014).

    Article  Google Scholar 

  45. Adelberger, E., Heckel, B. & Nelson, A. Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77–121 (2003).

    Article  ADS  CAS  Google Scholar 

  46. Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983).

    Article  ADS  Google Scholar 

  47. Ignatiev, A. Testing MOND on Earth 1. Can. J. Phys. 93, 166–168 (2015).

    Article  ADS  CAS  Google Scholar 

  48. Tebbenjohanns, F., Frimmer, M., Jain, V., Windey, D. & Novotny, L. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett. 124, 013603 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Article  ADS  PubMed  Google Scholar 

  50. Turner, M. D., Hagedorn, C. A., Schlamminger, S. & Gundlach, J. H. Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification. Opt. Lett. 36, 1479–1481 (2011).

    Article  ADS  PubMed  Google Scholar 

  51. Schmoele, J. Development of a Micromechanical Proof-Of-Principle Experiment for Measuring the Gravitational Force of Milligram Masses. PhD thesis, Univ. of Vienna (2017).

  52. Newport pneumatic optical table performance. Newport

  53. Lewandowski, C. W., Knowles, T. D., Etienne, Z. B. & D’Urso, B. Active optical table tilt stabilization. Rev. Sci. Instrum. 91, 076102 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Displacement of open loop piezo actuators. PI

  55. Weiss, R. Charging of the Test Masses Past, Present and Future. LIGO Document T1100332 (2011);

  56. Lekner, J. Electrostatics of two charged conducting spheres. Proc. R. Soc. A 468, 2829–2848 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Díaz, J., Ruiz, M., Sánchez-Pastor, P. S. & Romero, P. Urban seismology: on the origin of earth vibrations within a city. Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  58. Groos, J. C. & Ritter, J. R. R. Time domain classification and quantification of seismic noise in an urban environment. Geophys. J. Int. 179, 1213–1231 (2009).

    Article  ADS  Google Scholar 

  59. Bourdillon, A., Ropars, G., Gaffet, S. & Le Floch, A. Opposite sense ground rotations of a pair of Cavendish balances in earthquakes. Proc. R. Soc. A 471, 20140997 (2015).

    Article  ADS  Google Scholar 

  60. Shimoda, T., Aritomi, N., Shoda, A., Michimura, Y. & Ando, M. Seismic cross-coupling noise in torsion pendulums. Phys. Rev. D 97, 104003 (2018).

    Article  ADS  CAS  Google Scholar 

  61. Gettings, C. & Speake, C. An air suspension to demonstrate the properties of torsion balances with fibers of zero length. Rev. Sci. Instrum. 91, 025108 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Lide, D. R. CRC Handbook of Chemistry and Physics Vol. 85 (CRC Press, 2004).

  63. Shih, J. W. Magnetic properties of gold-iron alloys. Phys. Rev. 38, 2051–2055 (1931).

    Article  ADS  CAS  Google Scholar 

  64. Henry, W. & Rogers, J. XXI. The magnetic susceptibilities of copper, silver and gold and errors in the Gouy method. Philos. Mag. 1, 223–236 (1956).

    Article  ADS  CAS  Google Scholar 

  65. Sushkov, A., Kim, W., Dalvit, D. & Lamoreaux, S. Observation of the thermal Casimir force. Nat. Phys. 7, 230–233 (2011).

    Article  CAS  Google Scholar 

  66. Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 99, 170403 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Beer, W. et al. The METAS 1 kg vacuum mass comparator-adsorption layer measurements on gold-coated copper buoyancy artefacts. Metrologia 39, 263 (2002).

    Article  ADS  CAS  Google Scholar 

  68. Gläser, M. & Borys, M. Precision mass measurements. Rep. Prog. Phys. 72, 126101 (2009).

    Article  ADS  Google Scholar 

Download references


We thank E. Adelberger, A. Buikema, P. Graham, N. Kiesel, N. Klein, D. Racco and J. Schmöle for discussions. We are grateful for the suspension fibre provided by A. Rauschenbeutel and T. Hoinkes and for the mechanical design assistance by M. Dragosits. This project was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 649008, ERC CoG QLev4G), by the Austrian Academy of Sciences through Innovationsfonds Forschung, Wissenschaft und Gesellschaft, by the Alexander von Humboldt Foundation through a Feodor Lynen Fellowship (T.W.) and by the Austrian Federal Ministry of Education, Science and Research (project VCQ HRSM).

Author information

Authors and Affiliations



T.W., J.P. and M.A. conceived the experiment, T.W., H.H. and J.P. constructed and conducted the experiment and analysed the results. All authors wrote and reviewed the manuscript.

Corresponding authors

Correspondence to Tobias Westphal or Markus Aspelmeyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Quadrant photodiode calibration.

The video-tracked yaw angle of the torsion pendulum is compared to the QPD readout (horizontal difference signal normalized by the total sum signal to reduce laser intensity noise coupling). A third-order polynomial fit to these data provides our QPD signal calibration. The occurrence probability accumulated over all our data runs shows the region in which a calibration is required, that is, Vx/Vsum [−0.4, 0.2].

Extended Data Fig. 2 One-hour displacement spectra.

a, The displacement amplitude spectral density (ASD) estimate of 1-h data chunks of representative data taken between 26 and 27 December shows stationary readout noise at high frequencies and non-stationary white force noise at low frequencies. The level of the latter varies up to tenfold, consistently being the lowest at 0–5 a.m., particularly in the night after public holidays or Sundays, that is, before normal workdays. During such quiet periods, the thermal noise of the pendulum is reached. b, Time-series data spanning half an hour during the 3–4 a.m. segment. The data trace is bandpass-filtered in the frequency range 5–75 mHz with a 6th-order Butterworth filter and magnified by a factor of 20.

Extended Data Fig. 3 Schematic of drive mechanism.

The source-mass drive, consisting of a bending piezo and a titanium rod, can modulate the source-mass position by more than 5 mm peak to peak at frequencies as high as 1 Hz. The geometry of the titanium rod amplifies and translates the piezo deformation into an approximately linear motion.

Extended Data Fig. 4 Probability distribution of F(d) without an electromagnetic shield.

Without electrostatic shielding, the probability density distribution of inferred force versus source–test mass separation requires three constituents to describe: Newtonian gravity (see Fig. 3), electrostatic interaction between charged (~8 × 104e+; e, elementary charge) test mass and grounded source mass56, and an unexplained force proportional to the separation.

Extended Data Fig. 5 Finite-element method simulation of charge distribution.

The charge distribution induced by a 3 × 104e+ charged source mass on the grounded test mass was determined by a finite-element simulation (COMSOL; shown for 1 mm surface separation as an example). With the grounded, conductive electrostatic shield in place, many mirror charges are induced in the unmodulated shield, resulting in a d.c. force. The induced surface charge density (colour-coded) on the position-modulated source mass is suppressed by a factor of approximately 100. These charges are screened by the shield, resulting in further suppression of the exerted force. The actual suppression could not be quantified owing to numerical inaccuracies.

Extended Data Fig. 6 Simulation of electrostatic coupling.

Our finite-element simulation of the electrostatic interaction of a charged test mass (105e+) and a grounded source mass was validated using the analytical method described in ref. 56. When inserting a 150-μm-thick, conductive electrostatic shield between them, the electrostatic force exerted onto the test mass is dominated by the test mass–shield interaction, that is, it becomes independent of the source-mass position. Residual fluctuations of the force are on the 3–10% level of gravity, without a clear source position dependence, and are expected to stem from numerical errors.

Extended Data Fig. 7 Magnetic and seismic coupling.

a, The time-resolved amplitude spectral density of the horizontal ground motion in Vienna, recorded by an STS2 broadband seismometer, shows a strong frequency dependence of the variability. A rise of the noise floor is observed throughout the frequency range, starting from midnight (dark blue) to noon (light blue), but is most prominent at 30–40 mHz. By contrast, the noise floor at the microseismic peak, at around 70 mHz, varies only slightly. The modulation frequency of the drive mass is marked by a vertical dashed line. Each spectrum corresponds to a single 2-h measurement. b, The amplitude spectral density of magnetic field variations at the site of the experiment were measured with a three-axis magnetometer (Stefan Mayer FLC3-70; z = vertical, y = along source–test mass axis). The signal at 10 mHz is explained by the period of the traffic light at a nearby crossing, regulating car traffic as well as trams. The inferred force acting on the pendulum (red line), shows no sign of this signal. Each spectrum corresponds to a single 8,000-s measurement.

Extended Data Fig. 8 Shape of test-mass sphere.

a, 2D projection of the test mass. The centre of mass determined by the geometric centre of mass (mean over all image dimensions), as well as the centre of mass calculated by our shape evaluation, are indicated (‘Volume COM’). The centre of mass used in the determination of G is indicated by a blue cross. b, The radius measured from the geometric COM over all angles is shown.

Extended Data Table 1 Surplus charges over time
Extended Data Table 2 Identified systematics

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphal, T., Hepach, H., Pfaff, J. et al. Measurement of gravitational coupling between millimetre-sized masses. Nature 591, 225–228 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing